1. See, C. H., R. A. Abd-Alhameed, A. A. Atojoko, N. J. McEwan, and P. S. Excell, "Link budget maximization for a mobile band subsurface wireless sensor in challenging water utility environments," IEEE Transactions on Industrial Electronics, Vol. 65, No. 1, 616-625, Jan. 2018.
doi:10.1109/TIE.2017.2719602
2. A White Paper on Enabling 5G in India, Telecom Regulatory Authority of India, Feb. 22, 2019.
3. Hong, W., Z. H. Jiang, C. Yu, J. Zhou, P. Chen, and Z. Yu, "Multibeam antenna technologies for 5G wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6231-6249, Dec. 2017.
doi:10.1109/TAP.2017.2712819
4. Ashraf, N., O. Haraz, M. A. Ashraf, and S. Alshebeili, "28/38-GHz dual-band millimeter-wave SIW array antenna with EBG structures for 5G applications," 2015 International Conference on Information and Communication Technology Research (ICTRC), 5-8, 2015.
doi:10.1109/ICTRC.2015.7156407
5. Cheng, H. R., Q. Song, Y.-C. Guo, X.-Q. Chen, and X.-W. Shi, "Design of a novel EBG structure and its application in fractal microstrip antenna," Progress In Electromagnetics Research C, Vol. 11, 81-90, 2009.
doi:10.2528/PIERC09091403
6. An, W., Y. Li, H. Fu, J. Ma, W. Chen, and B. Feng, "Low-profile and wideband microstrip antenna with stable gain for 5G wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 621-624, Apr. 2018.
doi:10.1109/LAWP.2018.2806369
7. Aliakbari, H., A. Abdipour, R. Mirzavand, A. Costanzo, and P. Mousavi, "A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-5, 2016.
8. Firdausi, A., G. Hakim, and M. Alaydrus, "Designing a tri-band microstrip antenna for targetting 5G broadband communications ," MATEC Web of Conferences, Vol. 218, 03015, ICIEE, 2018.
doi:10.1051/matecconf/201821803015
9. Mak, K. M., H. W. Lai, K. M. Luk, and C. H. Chan, "Circularly polarized patch antenna for future 5G mobile phones," IEEE Access, Vol. 2, 1521-1529, Dec. 2014.
10. Neto, A. S. E. S., M. L. M. Dantas, J. S. Silva, and H. C. C. Fernandes, "Antenna for the fifth-generation (5G) using an EBG structure," Advances in Intelligent Systems and Computing, Vol. 354, 33-38, Springer International Publishing Switzerland 2015, 2015.
11. Haraz, O., M. M. M. Ali, A. Elboushi, and A. Sebak, "Four-element dual-band printed slot antenna array for the future 5G mobile communication networks," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1-2, Jul. 2015.
12. Haraz, O. M., A. Elboushi, S. A. Alshebeili, and A. R. Sebak, "Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks," IEEE Access, Vol. 2, 909-913, 2014.
doi:10.1109/ACCESS.2014.2352679
13. Chu, C., J. Zhu, S. Liao, A. Zhu, and Q. Xue, "28/38 GHz dual-band dual-polarized highly isolated antenna for 5G phased array applications," 2019 IEEE MTT-S International Wireless Symposium (IWS), 1-3, Guangzhou, China, May 19-22, 2019.
14. Saedi, H. A., J. A. Attari, W. M. A. Wahab, R. Mittra, and S. S. Naeini, "Single-feed dual-band aperture-coupled antenna for 5G applications," 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Aug. 19-22, 2018.
15. Singh, P. K. and J. Saini, "Effect of varying curvature and inter element spacing on dielectric coated conformal microstrip antenna array," Progress In Electromagnetics Research M, Vol. 58, 11-19, 2017.
doi:10.2528/PIERM17022012
16. Singh, P. K. and J. Saini, "Reconfigurable microstrip antennas conformal to cylindrical surface," Progress In Electromagnetics Research Letters, Vol. 72, 119-126, 2018.
doi:10.2528/PIERL17111002
17. Zaidi, A., A. Baghdad, A. Ballouk, and A. Badri, "High gain microstrip patch antenna, with PBG substrate and PBG cover, for millimeter wave applications," 2018 4th International Conference on Optimization and Applications (ICOA), 1-6, Mohammedia, 2018.
18. AbuTarboush, H. F., H. S. Al-Raweshidy, and R. Nilavalan, "Bandwidth enhancement for small patch antenna using PBG structure for different wireless applications," 2009 IEEE International Workshop on Antenna Technology, 1-4, Santa Monica, CA, 2009.
19. Qian, Y, R. Coccioli, D. Sievenpiper, V. Radisic, and E. Yablonovitch, "A microstrip patch antenna using novel photonic band-gap structures," Microwave Journal, Vol. 42, 66-71, Jan. 1999.
20. Wu, Y. and T. Fu, "The study on a patch antenna with PBG structure," 2009 Third International Symposium on Intelligent Information Technology Application, 565-567, Shanghai, 2009.
21. Jha, K. R. and G. Singh, "Analysis and design of terahertz microstrip antenna on photonic bandgap material," Journal of Computation Electronics, Vol. 11, No. 4, 364-373, 2012.
doi:10.1007/s10825-012-0416-9
22. Temelkuran, B., M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with very high directivity," Journal of Applied Physics, Vol. 87, No. 1, 603-605, Jan. 2000.
doi:10.1063/1.371905
23. Singh, A. and S. Singh, "A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications," Photonics Nanostructures Fundamentals Applied, Vol. 14, 52-62, 2015.
doi:10.1016/j.photonics.2015.01.003
24. Kushwaha, R. K., P. Karuppanan, and L. D. Malviya, "Design and analysis of novel microstrip patch antenna on photonic crystal in THz," Physica B Condensed Matter, Vol. 545, 107-112, 2018.
doi:10.1016/j.physb.2018.05.045
25. Nejati, A., R. A. Sadeghzadeh, and F. Geran, "Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency," Physica B Condensed Matter, Vol. 449, 113-120, 2014.
doi:10.1016/j.physb.2014.05.014
26. Dadras, M., P. Rezaei, and M. Danaie, "Planar double-band monopole antenna with photonic crystal structure," Indian J. Sci. Technology, Vol. 8, No. 36, 1-4, 2016.
doi:10.17485/ijst/2015/v8i36/87670
27. Wu, Y. and T. Fu, "The study on a patch antenna with PBG structure," 2007 Workshop on Intelligent Information Technology Applications, Vol. 3, 565-567, Nov. 21-22, 2009.
28. AbuTarboush, H. F., H. S. Al-Raweshidy, and R. Nilavalan, "Bandwidth enhancement for patch antenna using PBG slot structure for 5, 6 and 9GHz applications," 2009 IEEE 10th Annual Wireless and Microwave Technology Conference, 1-1, Apr. 20-21, 2009.
29. Pandey, A. K., M. Chauhan, V. Killamsetty, and B. Mukherjee, "High gain compact rectangular dielectric resonator antenna using metamaterial as superstrate," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 12, 1-10, Wiley, 2019.
30. Sinha, M., V. Killamsetty, and B. Mukherjee, "Near field analysis of rdra loaded with split ring resonators superstrate ," Microwave and Optical Technology Letters, Vol. 60, No. 2, 472-478, Wiley, 2018.
doi:10.1002/mop.30995
31. Mukherjee, B., D. Kumar, and M. Gupta, "A novel hemispherical dielectric resonator antenna on an electromagnetic band gap substrate for broadband and high gain systems," AEU --- International Journal of Electronics and Communication, Vol. 68, 1185-1190, Elsevier, 2014.
32. Liu, S., S. Qi, W. Wu, and D. Fang, "Single-layer single-patch four-band asymmetrical U-slot patch antenna ," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4895-4899, Sept. 2014.
doi:10.1109/TAP.2014.2335816
33. Garg, M. K. and J. Saini, "Multi-band and multi-parameter reconfigurable slotted patch antenna with embedded biasing network ," (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 10, 2019.
34. Hocinia, A., M. N. Temmara, D. Khedrouchea, and M. Zamanib, "Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 36, 100723, Sept. 2019.
doi:10.1016/j.photonics.2019.100723
35. Kumar, C., M. I. Pasha, and D. Guha, "Microstrip patch with non-proximal symmetric defected ground structure (DGS) for improved cross-polarization properties over principal radiation planes," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1412-1414, Feb. 2015.
doi:10.1109/LAWP.2015.2406772