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PBG Structured Compact Antenna with Switching Capability
in Lower and Upper Bands of 5G

Jasmine Saini* and Manoj K. Garg

Abstract—A novel integrated compact antenna with photonic band gap (PBG) structure, having
switching capability between lower and upper bands of 5G cellular communication is proposed. The
proposed antenna can operate in the lower band (3.1 GHz to 3.5 GHz) as well as in the upper band
(24 GHz to 27 GHz) of 5G cellular communication. Two radiating patches for the aforementioned
frequency bands are developed in the same structure. A small patch for the upper-frequency band is
inserted into a rectangular slot made in a large patch of the lower-frequency band. Both patches radiate
at different times with the same ground. Two PIN diodes have been used to excite both patches at
different times. The results indicate that the antenna has higher gain and wider bandwidth than the
conventional antenna without a PBG structure.

1. INTRODUCTION

Wireless communication technology is evolving at a fast pace. 5G is a next-generation wireless
communication technology, which provides support for very high speed data transfer. This technology
would enable internet of things (IoT) and robotics applications to work effectively [1, 2]. With 5G, an
integrated compact antenna is required that can transmit and receive the signal within the proposed
lower and upper bands. Along with the conventional lower band, 5G technology also works in an
upper band (millimeter wave) to achieve a larger bandwidth, higher data transfer rate, and low latency.
Many researchers have proposed 5G microstrip antennas for lower and upper bands respectively [3–
14]. Recently, photonic band gap (PBG) structures have attracted the attention of researchers in
antenna design due to the property of lattice periodicity in space. It is because it can efficiently
suppress the surface waves and higher order harmonics. The conventional microstrip antennas have
the disadvantages of lower efficiency and narrow bandwidth due to the effect of surface waves [15, 16].
PBG structures provide stopbands, which eliminate the propagation of some frequencies, which affects
radiation properties of antennas [17–28]. Zaidi et al. in [17] have designed a microstrip patch antenna
at millimetre wave frequencies using a PBG cover and PBG substrate. They have reported gain
improvement from 7.77 dB to 15.52 dB, but their reflection coefficient (S11) has increased significantly
from −31.24 dB to −17.26 dB. In [18], a design strategy using a PBG structure on ground plane is
used to achieve wider bandwidth for patch antenna. The authors have reported an improvement in
the impedance bandwidth from 3.72% to 31.9% at centre frequency 9 GHz after adding PBG on the
ground plane. In [19, 20], the works reported also show enhancement in gain and bandwidth. The works
attempted so far in the literature are either in the low-frequency band or in the upper frequency band.
Recently, a new class of antennas using metamaterials has attracted the interest of many researchers.
These artificial materials can enhance the characteristics of miniaturized antennas. A compact high gain
rectangular dielectric resonator antenna using metamaterial as a superstrate for C-band applications
is proposed in [29]. Authors have reported the increases in the peak gain of the antenna by 86%.
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Electromagnetic band gap (EBG) antennas are also becoming a popular choice among researchers
because of its ability to offer unique solutions for effectively manipulating EM waves over a broad range
of frequencies.

In [30, 31], a split ring resonator (SRR) based EBG structure and hemispherical dielectric resonator
antenna on an EBG substrate, respectively, are discussed for broadband and high gain systems. The
works attempted so far in the literature are either in the low-frequency band or in the upper frequency
band. In the proposed work, the antenna has been designed to work with the same structure in both
bands of 5G technology.

2. ANTENNA DESIGN CONSIDERATION

The proposed antenna is designed and simulated on HFSS software. A Rogers 5880, having a dielectric
constant of 2.2, loss tangent of 0.0013, and standard height of 1 mm, is taken as a dielectric material
for substrate. Dimensions of the patch for the proposed antenna are calculated using the well-known
microstrip patch antenna formulas as stated below [32].

The dimensions of the ground and substrate are the same (Lg × Wg) which can be calculated by
using the formula given in Equations (6) and (7), respectively. The selected dimensions of the radiating
patch 1 (Lp1×Wp1), patch 2 (Lp2×Wp2), and ground are given in Table 1. The top view of the radiating
patch, bottom views of ground with and without the PBG structure are shown in Figure 1. To obtain
the desired bandwidth and gain, a 2D PBG structure is formed by cutting the sixteen square blocks of
size (a × a) at the ground plane as shown in Figure 1(c).

(a) (b)

(c)

Figure 1. Geometry of the proposed antenna. (a) Top view. (b) Bottom view without PBG. (c)
Bottom view with PBG.
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Table 1. Design parameters of the antenna.

Dimensions Values (mm)
Lp1 26
Wp1 30
Lp2 4.5
Wp2 8.5
Ls 8
Ws 12
Lg 44
Wg 48
A 5
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The actual length of the patch
L = Leff − 2ΔL (5)

Length of Ground plane
Lg = L + 6h (6)

Width of Ground plane
Wg = W + 6h (7)

where the following parameters are used

f0 is the resonant frequency;
W is the width of the patch;
L is the length of the patch;
h is the thickness of the substrate;
εr is the relative permittivity of the dielectric substrate;
c is the Speed of light: 3 × 108 m/s.

Both patches are designed according to the bands proposed by Telecom Regulatory Authority
of India (TRAI) and their resonant frequencies. Dimensions of both bands (lower and upper) have
been calculated according to their resonant frequencies 3.3 GHz and 25.5 GHz, respectively. Patch 2
is fixed inside the rectangular slot made in patch 1. But the slot cut in patch 1 itself generates the
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(a) (b)

Figure 2. Fabricated antenna with PBG structure. (a) Top view. (b) Bottom view.

resonant frequency of a higher mode. The high frequency generated by the rectangular slot should not
interfere in both the bands, thus, it is important to take this frequency between the two bands. The
resonant frequencies of higher modes generated by rectangular slots created in patch 1 can be changed
by changing the slots’ dimensions [33, 34]. A PBG structure has been built on the ground plane to
improve the desired bandwidth and other characteristics of the antenna. The top and bottom views
of the fabricated antenna with PBG structured ground plane are presented in Figure 2. A periodic
PBG structure is designed on the ground plane with the help of 16 small squares. A coaxial probe with
50-ohm characteristic impedance has been used to feed both the patches (Patch 1 and Patch 2) with
the help of two PIN diodes.

Switching ON or OFF of these two PIN diodes is controlled by an external biasing circuit with the
help of a microcontroller as shown in Figure 3. This biasing circuit consists of two blocking capacitors
of value 0.1 µF each and two inductor coils of value 6.8 nH each. Two blocking capacitors (Cb1 and Cb2)
help to protect the antenna from the DC voltage.

Figure 3. Biasing circuit using microcontroller board.

3. RESULTS AND DISCUSSIONS

The patches can be connected with the coaxial feed probe by turning PIN diode 1 and PIN diode 2 in
ON or OFF state.

When PIN 1 turns on, patch 1 is excited and radiates in the lower band of 5G with resonant
frequency 3.14 GHz and the reflection coefficient of −25.8 dB as shown in Figure 4(a). Similarly, on the
excitation of patch 2, the antenna radiates in the upper band of 5G with resonant frequency 24.63 GHz
and reflection coefficient of −32.54 dB as shown in Figure 4(b).

From Figure 4, it can be observed that the bandwidths of the lower and upper bands (without
PBG structure) are 50 MHz and 1420 MHz, respectively, which are insufficient for 5G applications. For
bandwidth enhancement, a 2D PBG structure is etched on the ground plane. This periodic pattern of
sixteen square blocks is shown in Figure 1(c).
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Figure 4. Return loss of the antenna without PBG structure. (a) Lower band. (b) Upper band.
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Figure 5. Return loss at different PBG dimensions for (a) lower band, (b) upper band.

The dimensions of square blocks are optimized for wider bandwidth using optometric analysis.
Return loss simulations are carried out for different dimensional values of side ‘a’ (a = 3, 4, 5 and 6 mm)
of the square block as shown in Figures 5(a) and 5(b).

It is clearly evident that with increasing the size of the square block made in the PBG structure,
the bandwidth of both bands also increases. The return loss and corresponding bandwidth at different
values of square slot dimensions are tabulated in Table 2. It is evident from the optometric analysis
of both the bands that keeping a = 5mm, best results can be obtained. The PBG structure not only
increases the bandwidth of the antenna but also improves its gain and directivity. The gains of the
antenna (simulated and measured) at the lower and upper bands without and with PBG structure are
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Figure 6. Measured and simulated antenna gain without and with PBG structure of (a) lower band,
(b) upper band.

shown in Figure 6. In the upper band, the gain pattern is not very smooth as evident from Figure 6(b).
Due to the cutting of slots, side lobe and back lobe levels are increased slightly at the upper band. This is
because the size of the PBG structure becomes comparable to the wavelength at higher frequencies. At
the same time, the bandwidth is increased many folds in upper band due to cutting the PBG structure
on the ground plane. So, there is a tradeoff with the side lobe and back lobe radiation to some extent to
get wider bandwidth in the upper band of 5G. The measured and simulated return losses with the PBG
structure of the lower and upper bands of 5G are shown in Figure 7. All results (return loss, gain, and
bandwidth) of the lower and upper bands without and with PBG structure are tabulated in Table 3.
By using PBG structure, gain, bandwidth, and reflection coefficient are improved by 3.54 dB, 530 MHz,
and −3.2 dB in the lower band and 1.2 dB, 1200 MHz, and −5.36 dB in the upper band respectively.

Table 2. Results of optometric analysis.

Lower Band Upper Band
a (mm) S11 (dB) Range (GHz) BW (MHz) S11 (dB) Range (GHz) BW (MHz)

3 −28 3.79–4.03 240 −34.7 23.4–24.2 800
4 −23 3.19–3.44 250 −22.7 23.3–25.2 1900
5 −28.5 3.19–3.46 270 −37.6 23.49–25.96 2470
6 −19.3 3.01–3.30 290 −26.7 23.12–25.9 2780
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Table 3. Comparison of parameters (without PBG structure and with PBG structure).

Bands
Type of

Ground
Simulated Results Measured Results

S11

(dB)

Gain

(dB)

Bandwidth

(MHz)

S11

(dB)

Gain

(dB)

Bandwidth

(MHz)

Lower

Band

Without PBG

Structure
−25.8 5.92

50

(3.1–3.15 GHz)
−24 5.02

49

(3.21–3.259 GHz)

With PBG

Structure
−29 9.46

580

(3.13–3.71 GHz)
−25.20 8.26

580

(3.34–3.92 GHz)

Upper

Band

Without PBG

Structure
−32.5 7.66

1420

(24.16–25.58 GHz)
−30.90 6.64

1410

(25.51–24.10 GHz)

With PBG

Structure
−38 8.8

2620

(23.4–26.02 GHz)
−31.80 8.18

2600

(23.5–26.1 GHz)

(a) (b)

Figure 7. Simulated and measured return loss with PBG structure. (a) Lower band. (b) Upper band.

The surface current distributions of patch 1 and patch 2 are shown in Figure 8. When patch 1
is excited, the surface current density can be observed everywhere on patch 1, and negligible current
lies on patch 2 due to the mutual induction between patch 1 and patch 2. It shows that the mutual
induction between patch 1 and patch 2 is negligibly small, i.e., the performance of patch 1 will not be
deteriorated due to the presence of patch 2. On the other hand, when we excite patch 2, the surface
current density can be observed everywhere on patch 2, and a significant but very small current lies on
patch 1 due to the mutual induction between patch 1 and patch 2. From Figure 8(b), it is clear that the
current on patch 1 due to induction ends within very small distance, i.e., the performance of patch 2
will not be deteriorated significantly. Cross-polarization is the orthogonal polarization, and it should
be as low as possible. A simple way of minimizing such effects is by using a defective ground plane
[35]. The number of squares cut on the ground plane is optimized to reduce this effect. Measurement
of cross polarization is calculated as the ratio of maximum gain of cross-polarization to maximum gain
of co-polarization. The cross-polarization and co-polarization effects at the lower and upper frequency
bands for the two values of the angle ϕ (0◦ and 90◦) are shown in Figures 9 and 10, respectively. Table 4
gives the values of cross polarization at different values of ϕ.

After observing the results, it can be seen that there is a substantial improvement in the antenna
characteristics like gain, return loss, bandwidth after employing PBG structure. From Table 3, it can
be observed that the simulated and measured results are in good agreement.
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(a) (b)

Figure 8. Surface current distribution when (a) patch 1 is excited (b), patch 2 is excited.

(a) (b)

Figure 9. Cross polarization effect at lower frequency band (a) φ = 0◦. (b) φ = 90◦.

(a) (b)

Figure 10. Cross polarization effect at upper frequency band (a) φ = 0◦. (b) φ = 90◦.
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Table 4. Cross polarization values in lower and upper bands.

S. No Angle ϕ Cross polarization in dB
Lower frequency band Upper frequency band

1 ϕ = 0◦ −37.05 −11.09
2 ϕ = 90◦ −20.41 −13.11

4. CONCLUSION

The proposed antenna provides the flexibility to work in either a low-frequency band or an upper
frequency band of 5G. Both bands can be switched alternately by electronic methods. Besides, this novel
antenna based on a PBG structure has enhanced the characteristics of antenna like gain, bandwidth, etc.
manifold. From the simulated and measured results, it is observed that the antenna’s gain, bandwidth,
and return loss are significantly improved by using a PBG structure. Therefore, PBG structures are
helpful in enhancing the characteristics of antennas, thus making them suitable for future 5G and high
frequency applications.
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