Vol. 89
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2020-11-13
Topological Circuit Theory: a Lie Group Perspective
By
Progress In Electromagnetics Research B, Vol. 89, 133-156, 2020
Abstract
We present a general theory of linear continuous circuits (microwave networks, waveguides, transmission lines, etc.) based on Lie theory. It is shown that the fundamental relationship between the low- and high-frequency circuits can be fully understood via the machinery of Lie groups. By identifying classes of distributed-parameter circuits with matrix (Lie) groups, we manage to derive the most general differential equation of the n-port network, in which its low-frequency (infinitesimal) circuit turns out to be the associated Lie algebra. This equation is based on identifying a circuit Hamiltonian derived by heavily exploiting the Lie-group-theoretic structure of continuous circuits. The solution of the equation yields the circuit propagator and is formally expressed in terms of ordered exponential operators similar to the quantum field theory's formula of perturbation theory (Dyson expansion). Moreover, the infinitesimal operators generating the per-unit-length lumped element local circuit approximation appear to correspond to operators (such as observables) in quantum theory. This analogy between quantum theory and circuit theory through a shared Hamiltonian and propagator structure is expected to be beneficial for the two separate disciplines both conceptually and computationally. Several applications are presented in the field of microwave network analysis where we introduce and study the Lie algebras of important generic classes of circuits, such as lossless, reciprocal, and nonreciprocal networks. Applications to the problems of generalized matching and representation theorems in terms of uniform transmission lines are also outlined using topological methods derived from our Lie-theoretic formulation and exact theorems on continuous matching are obtained to illustrate the potential practical use of the theory.
Citation
Said Mikki, "Topological Circuit Theory: a Lie Group Perspective," Progress In Electromagnetics Research B, Vol. 89, 133-156, 2020.
doi:10.2528/PIERB20022104
References

1. Hasan, M. Z. and C. L. Kane, "Colloquium: Topological insulators," Rev. Mod. Phys., Vol. 82, 3045-3067, Nov. 2010.
doi:10.1103/RevModPhys.82.3045

2. Ozawa, T., H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, "Topological photonics," Rev. Mod. Phys., Vol. 91, 015006, Mar. 2019.
doi:10.1103/RevModPhys.91.015006

3. Schwarz, A. S., Topology for Physicists, Springer-Verlag, 1994.
doi:10.1007/978-3-662-02998-5

4. Penrose, R., Techniques of Differential Topology in Relativity, Society for Industrial and Applied Mathematics, 1972.
doi:10.1137/1.9781611970609

5. Ranada, A. F., "Topological electromagnetism," Journal of Physics A: Mathematical and General, Vol. 25, No. 6, 1621-1641, Mar. 1992.
doi:10.1088/0305-4470/25/6/020

6. Mikki, S. and Y. Antar, "A topological approach for the analysis of the structure of electromagnetic flow in the antenna near-field zone," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1772-1773, Jul. 2013.

7. Mikki, S. M. and Y. M. Antar, "Morphogenesis of electromagnetic radiation in the near-field zone," Asia Pacific Radio Science Conference (URSI), Taipei, Taiwan, Sep. 2–7, 2013.

8. Mikki, S. and Y. Antar, New Foundations for Applied Electromagnetics: The Spatial Structure of Fields, Artech House, 2016.

9. Lie, S., Theory of Transformation Groups I: General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation, Springer, 2015.

10. Weyl, H., The Theory of Groups and Quantum Mechanics, Martino Publishing, 2014.

11. Penrose, R., The Road to Reality: A Complete Guide to the Laws of the Universe, Vintage Books, 2007.

12. Schwinger, J., et al., Classical Electrodynamics, Perseus Books, 1998.

13. Collin, R., Foundations for Microwave Engineering, IEEE Press, 2001.
doi:10.1109/9780470544662

14. Chew, W. C., Waves and Fields in Inhomogenous Media, Wiley-IEEE, 1999.
doi:10.1109/9780470547052

15. Felsen, L., Radiation and Scattering of Waves, IEEE Press, 1994.
doi:10.1109/9780470546307

16. Zeidler, E., Quantum Field Theory III: Gauge Theory, Springer, 2011.
doi:10.1007/978-3-642-22421-8

17. Thyssen, P. and A. Ceulemans, Shattered Symmetry: Group Theory from the Eightfold Way to the Periodic Table, Oxford University Press, 2017.

18. Chirikjian, G. and A. Kyatkin, Engineering Applications of Noncommutative Harmonic Analysis, CRC Press, 2001.

19. Chirikjian, G., Stochastic Models, Information Theory, and Lie Groups, Birkhauser, 2009.
doi:10.1007/978-0-8176-4803-9

20. Chevalley, C., Theory of Lie Groups, Dover Publications, Inc., 2018.

21. Godement, R., Introduction to the Theory of Lie Groups, Springer, 2017.
doi:10.1007/978-3-319-54375-8

22. Weyl, H., The Classical Groups: Their Invariants and Representations, Princeton University Press, 1946.

23. Sudarshan, E. C. G. and N. Mukunda, Classical Dynamics: A Modern Perspective, World Scientific, 2016.

24. Collin, R. E., Field Theory of Guided Waves, Wiley-IEEE Press, 1991.

25. Cohn, P. M., Lie Groups, University Press, 1957.

26. Stillwell, J., Naive Lie Theory, Springer, 2008.
doi:10.1007/978-0-387-78214-0

27. Gilmore, R., Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists, Cambridge University Press, 2008.
doi:10.1017/CBO9780511791390

28. Baker, A., Matrix Groups: An Introduction to Lie Group Theory, Springer, 2002.

29. Hall, B., Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, 2015.
doi:10.1007/978-3-319-13467-3

30. Loewner, C., Theory of Continuous Groups, Dover Publications, 2008.

31. Zeidler, E., Quantum Field Theory I: Basics in Mathematics and Physics, Springer, 2009.

32. Mikki, S. and Y. Antar, A rigorous approach to mutual coupling in general antenna systems through perturbation theory, Vol. 14, 115-118, IEEE Antennas and Wireless Communication Letters, 2015.

33. Mikki, S. M. and Y. Antar, "Aspects of generalized electromagnetic energy exchange in antenna systems: A new approach to mutual coupling," EuCap 2015, 1-5, Apr. 2015.

34. Hassani, S., Mathematical Physics: A Modern Introduction to Its Foundations, Springer, 2013.

35. Cui, T., et al., Metamaterials: Beyond Crystals, Noncrystals, and Quasicrystals, CRC Press, 2016.
doi:10.1201/b21590

36. Mikki, S. M. and A. A. Kishk, "Electromagnetic wave propagation in nonlocal media: Negative group velocity and beyond," Progress In Electromagnetics Research B, Vol. 14, 149-174, 2009.
doi:10.2528/PIERB09031911

37. Mikki, S. M. and A. A. Kishk, "Nonlocal electromagnetic media: A paradigm for material engineering," Passive Microwave Components and Antennas, InTech, Apr. 2010.

38. Jackson, J., Classical Electrodynamics, Wiley, 1999.

39. Erdmann, K. and M. J. Wildon, Introduction to Lie Algebras, Springer, 2006.
doi:10.1007/1-84628-490-2

40. Munkres, J., Topology, Pearson, 2018.

41. Schwede, S., Global Homotopy Theory, Cambridge University Press, 2018.
doi:10.1017/9781108349161

42. Mosher, R. and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Dover Publications, 2008.

43. Kelley, J., General Topology, Dover Publications, Inc., 2017.

44. Godement, R., "Analysis I: Convergence, Elementary Functions," Springer, Berlin New York, 2004.

45. Godement, R., Analysis II: Differential and Integral Calculus, Fourier Series, Holomorphic Functions, Springer-Verlag, 2005.

46. Lee, J., Introduction to Smooth Manifolds, Springer, 2012.
doi:10.1007/978-1-4419-9982-5

47. Lang, S., Introduction to Differentiable Manifolds, Interscience, 1962.

48. Pontryagin, L. S., Topological Groups, Gordon and Breach Science Publishers, 1986.

49. Montgomery, D. and L. Zippin, Topological Transformation Groups, Dover Publications, Inc., 2018.

50. Husain, T., Introduction to Topological Groups, Dover Publications, 2018.