Vol. 93
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-09-28
A Novel Single Layer Ultra-Wideband Metamaterial Absorber
By
Progress In Electromagnetics Research Letters, Vol. 93, 107-114, 2020
Abstract
Electromagnetic interference (EMI) is a crucial problem, and for solving this problem, absorbers especially very thin absorbers are used. Factors like frequency increasing in a device, high integration in electronic systems, higher power densities, and decreasing the size and thickness of PCB make it crucial. So, a novel ultra-wideband and thin metamaterial absorber is proposed in this paper. The absorber consists of metamaterial unit cells, which have a single FR4 layer, metallic ground, and four metallic spirals. A one hundred ohms SMD resistor is placed between two of the spirals. The size of the unit cell is 5.85×5.85×3.2 mm3. The proposed absorber is ultra-thin (λ0/10), and the absorption occurs over a wide incident angle [0°-40°]. The reflection is less than -12dB in [6.5 GHz -12 GHz], and the absorption is more than 94% in this bandwidth. The structure is fabricated, and the outcomes of simulation and measurement are compared with each other. The values of front to back ratio of the fabricated measurements are -12.8, -7.31, and -15.36 dB at 8, 10, and 12 GHz, respectively. The values obtained from simulation are -13, -9.4, and -14 dB, respectively. There is a good agreement(accordance) between the simulation and measurement results of this absorber.
Citation
Pegah Nochian, and Zahra Atlasbaf, "A Novel Single Layer Ultra-Wideband Metamaterial Absorber," Progress In Electromagnetics Research Letters, Vol. 93, 107-114, 2020.
doi:10.2528/PIERL20011406
References

1. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, 1443-1454, 1988.
doi:10.1109/8.8632

2. Du Toit, L. J., "The design of Jauman absorbers," IEEE Antennas and Propagation Magazine, Vol. 36, 17-25, 1994.
doi:10.1109/74.370526

3. Yang, J. and Z. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 388-391, 2007.
doi:10.1109/LAWP.2007.903496

4. Tang, W. and Z. Shen, "Simple design of thin and wideband circuit analogue absorber," Electronics Letters, Vol. 43, 689-691, 2007.
doi:10.1049/el:20070956

5. Seman, F. C., R. Cahill, V. Fusco, and G. Goussetis, "Design of a Salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance," IET Microwaves, Antennas & Propagation, Vol. 5, 149-156, 2011.
doi:10.1049/iet-map.2010.0072

6. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

7. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Transactions on Antennas and Propagation, Vol. 57, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601

8. El-Aasser, M. A., "Design optimization of nanostrip metamaterial perfect absorbers," Journal of Nanophotonics, Vol. 8, 083085, 2014.
doi:10.1117/1.JNP.8.083085

9. Landy, N. I., S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

10. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012.
doi:10.2528/PIERL12071606

11. Bian, B., S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, et al. "Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, 194511, 2013.
doi:10.1063/1.4832785

12. Shen, X., T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Optics Express, Vol. 19, 9401-9407, 2011.
doi:10.1364/OE.19.009401

13. Cheng, Y., M. Huang, H. Chen, Z. Guo, X. Mao, and R. Gong, "Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves," Materials, Vol. 10, 591, 2017.
doi:10.3390/ma10060591

14. Mahmood, A., G. Ogucu Yetkin, and C. Sabah, "Design and fabrication of a novel wideband DNG metamaterial with the absorber application in microwave X-band," Advances in Condensed Matter Physics, Vol. 2017, 2017.

15. Tao, H., C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, et al. "A dual band terahertz metamaterial absorber," Journal of Physics D: Applied Physics, Vol. 43, 225102, 2010.
doi:10.1088/0022-3727/43/22/225102

16. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Applied Physics Letters, Vol. 96, 251104, 2010.
doi:10.1063/1.3442904

17. Shang, Y., Z. Shen, and S. Xiao, "On the design of single-layer circuit analog absorber using double-square-loop array," IEEE Transactions on Antennas and Propagation, Vol. 61, 6022-6029, 2013.
doi:10.1109/TAP.2013.2280836

18. Yoo, M. and S. Lim, "Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer," IEEE Transactions on Antennas and Propagation, Vol. 62, 2652-2658, 2014.
doi:10.1109/TAP.2014.2308511

19. Sohrab, A. P. and Z. Atlasbaf, "A circuit analog absorber with optimum thickness and response in X-band," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 276-279, 2013.
doi:10.1109/LAWP.2013.2248073

20. Lee, D., H. Jeong, and S. Lim, "Electronically switchable broadband metamaterial absorber," Scientific Reports, Vol. 7, 4891, 2017.
doi:10.1038/s41598-017-05330-z

21. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, 014909, 2011.
doi:10.1063/1.3608246

22. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [education column]," IEEE Antennas and Propagation Magazine, Vol. 55, 202-211, 2013.
doi:10.1109/MAP.2013.6735515