1. Wu, Q., C. P. Scarborough, M. D. Gregory, D. H. Werner, R. K. Shaw, and E. Lier, "Broadband metamaterial-enabled hybrid-mode horn antennas," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.
2. Scarborough, C. P., Q. Wu, M. D. Gregory, D. H. Werner, R. K. Shaw, and E. Lier, "Broadband metamaterial soft-surface horn antennas," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.
3. Shaw, R. K., E. Lier, and C.-C. Hsu, "Profiled hard metamaterial horns for multibeam reflectors," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.
4. Lier, E., R. K. Shaw, D. H. Werner, Q. Wu, C. P. Scarborough, and M. D. Gregory, "Statuts on meta-horn development - Theory and experiments," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.
5. Kildal, P.-S. and E. Lier, "Hard horns improve cluster feeds of satellite antennas," Electron. Lett., Vol. 24, No. 8, 491-492, Apr. 1988.
6. Thomas, B., "A method of synthesizing radiation patterns with axial symmetry," IEEE Trans. Antennas Propag., Vol. 14, No. 5, 654-656, Sep. 1966.
7. Lier, E., "Review of soft and hard horn antennas, including metamaterial-based hybrid-mode horns," IEEE Trans. Antennas Propag. Mag., Vol. 52, No. 2, 31-39, Apr. 2010.
8. Pollock, J. G. and A. K. Iyer, "Below-cutoff propagation in metamaterial-lined circular waveguides," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 9, 3169-3178, Sep. 2013.
9. Pollock, J. G. and A. K. Iyer, "Radiation characteristics of miniaturized metamaterial-lined waveguide probe antennas," Proc. 2015 IEEE Int. Symp. on Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 1734-1735, Vancouver, BC, Canada, Jul. 2015.
10. Pollock, J. G. and A. K. Iyer, "Miniaturized circular-waveguide probe antennas using metamaterial liners," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 428-433, Jan. 2015.
11. Pollock, J. G. and A. K. Iyer, "Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 4, 1297-1305, Apr. 2016.
12. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microw. Opt. Technol. Lett., Vol. 54, No. 7, 1770-1774, 2012.
13. Huang, Y., L. Yang, J. Li, Y. Wang, and G. Wen, "Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna," Appl. Phys. Lett., Vol. 109, No. 5, 054101, 2016.
14. Zhu, H. L., S. W. Cheung, X. H. Liu, and T. I. Yuk, "Design of polarization reconfigurable antenna using métasurfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2891-2898, 2014.
15. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 2006.
16. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 179-188, 2015.
17. Yang, J. J., Y. Z. Cheng, C. C. Ge, and R. Z. Gong, "Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction," Materials, Vol. 11, No. 4, 626, 2018.
18. Zheng, Q., C. Guo, H. Li, and J. Ding, "Broadband radar cross-section reduction using polarization conversion métasurfaces," Int. J. Microw. Wirel. Technol., Vol. 10, No. 2, 197-206, 2018.
19. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion métasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2015.
20. Zhang, L. and T. Dong, "Low RCS and high-gain CP microstrip antenna using SA-MS," Electron. Lett., Vol. 53, No. 6, 375-376, 2017.
21. Li, K., Y. Liu, Y. Jia, and Y. J. Guo, "A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion métasurfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4288-4292, 2017.
22. Long, M., W. Jiang, and S. Gong, "Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2534-2537, 2017.
23. Sharma, A., D. Gangwar, B. Kumar Kanaujia, S. Dwari, and S. Kumar, "Design of a wideband polarisation conversion metasurface and its application for RCS reduction and gain enhancement of a circularly polarised antenna," IET Microw. Antennas Propag., Vol. 13, No. 9, 1427-1437, Jul. 2019, doi: 10.1049/iet-map.2018.6002.
24. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 2001.
25. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneoustly negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
26. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
27. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., Vol. 64, No. 5, Art. no. 056625, Dec. 2001.
28. Wu, Q., M. D. Gregory, D. H. Werner, P. L. Werner, and E. Lier, "Nature-inspired design of soft, hard and hybrid metasurfaces," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.
29. Byrne, B., N. Raveu, N. Capet, G. Le Fur, and L. Duchesne, "Modal analysis of rectangular waveguides with 2D metamaterials," Progress In Electromagnetics Research C, Vol. 70, 165-173, 2016.
30. Byrne, B., "Etude et conception de guides d'onde et d'antennes cornets à métamatériaux,", Ph.D. dissertation, These de doctorat d'état, Univ. Toulouse, Toulouse, France, 2016.
31. Kuhler, L., G. Le Fur, L. Duchesne, and N. Raveu, "The propagation characteristics of 2-D metamaterial waveguides using the modal expansion theory," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 10, 4319-4326, Oct. 2018.
32. Kuhler, L., G. Le Fur, L. Duchesne, and N. Raveu, "Modal analysis of cylindrical waveguides with 2-D metamaterial wall," Proc. META 2018 - The 9th Int. Conf.Metamaterials, Photonic Crystals Plasmonics, Marseille, France, 2018.
33. Kuhler, L., N. Raveu, G. Le Fur, and L. Duchesne, "Théorie modale élargie appliquée aux guides d'onde cylindriques à métamatériaux," Proc. XXIème Journées Nationales Microondes, Caen, France, 2019.
34. Warecka, M., R. Lech, and P. Kowalczyk, "Efficient finite element analysis of axially symmetrical waveguides and waveguide discontinuities," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 11, 4291-4297, 2019.
35. Byrne, B., N. Raveu, N. Capet, G. Le Fur, and L. Duchesne, "Reduction of rectangular waveguide cross-section with metamaterials: A new approach," Proc. 9th Int. Congr. Adv. Electromagn. Mater. Microw. Opt. (METAMATERIALS), 40-42, Oxford, U.K., Sep. 7-12, 2015.
36. Byrne, B., N. Capet, and N. Raveu, "Dispersion properties of corrugated waveguides based on the modal theory," Proc. 8th Eur. Conf. on Antennas Propag., 1-3, The Hague, The Netherland, Apr. 6-11, 2014.
37. Raveu, N., B. Byrne, L. Claudepierre, and N. Capet, "Modal theory for waveguides with anisotropic surface impedance boundaries," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 4, 1153-1162, Apr. 2016.
38. Verma, P. K., R. Kumar, and M. Singh, "Design of a shaped omni directional circular waveguide antenna," Applied Electromagn. Conf. (AEMC), Kolkata, India, Dec. 14-16, 2009.
39. Tang, J., L. Fang, and H. Cheng, "A low sidelobe and high gain omni-directional COCO antenna array," Proc. Asia-Pacific Conf. Antennas Propag. (APCAP), Harbin, China, Jul. 26-29, 2014.
40. Güngör, I. and A. Ünal, "Design of a verticaly polarized omni-directional antenna at Ka-band," IEEE Int. Symp. Antennas Propag. (APSURSI), Fajardo, Puerto Rico, Jun. 26-Jul. 1, 2016.
41. Granet, G. J. C., "Design of corrugated horns: A primer," IEEE Trans. Antennas Propag., Vol. 47, No. 2, 76-84, Jul. 2005.
42. Clarricoats, P. J. B., "Analysis of spherical hybrid modes in a corrugated conical horn," Electron. Lett., Vol. 5, No. 9, 189-190, May 1969.
43. Lier, E., "Hybrid-mode horn antenna with design-specific aperture distribution and gain," Proc. 2015 IEEE Int. Symp. on Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, Columbus, OH, USA, Jun. 22-27, 2003.
44. Clarricoats, P. J. B. and A. David Olver, Corrugated Horns for Microwave Antennas, Peregrinus, 1984.
45. Dular, P. and C. Geuzaine, "GetDP reference manual: The documentation for GetDP 3.0 - A general environment for the treatment of discrte problems,", Liège, Belgium, 2018.
46. Thomas, B. M. A. and H. C. Minnett, "Modes of propagation in cylindrical waveguides with anisotropic walls," Proc. Inst. Electrical Engineers, Vol. 125, No. 10, 929-932, Oct. 1978.
47. Geuzaine, C. and J.-F. Remacle, "Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," Int. J. for Numer. Methods Eng., Vol. 79, No. 11, 1309-1331, 2009.