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The Modal Expansion Theory Applied to 3-D Metamaterial
Waveguides Characterization

Lucille Kuhler1, *, Nathalie Raveu2, Gwenn Le Fur3, and Luc Duchesne4

Abstract—In this article, the Modal Expansion Theory (MET) is applied to 3-D metamaterial
waveguides. The equivalent surface impedances of the metamaterial are computed thanks to an open
software: GetDP, based on a 3-D Finite-Element-Method (FEM). This program is called during the
MET algorithm, which allows considering the frequency and incidence angle dependency of the surface
impedances of the metamaterial to compute the dispersion diagrams and the field cartography. To
validate the dispersion diagrams obtained with this technique, another FEM commercial software
(HFSS) is used as a reference.

1. INTRODUCTION

The advantages of using metamaterials in industry are well known [1–4]: controlling the field
distribution [3, 5–7], reducing the size of the devices [8–11], controlling the polarization [12–14]
and maybe in the next years for cloaking [15] or reducing the antennas radar cross-section [16–
23]. With their structuration, they constitute new artificial material with electromagnetic properties
that are not available in nature [24, 25]. In [25–27], a relative permittivity and/or a permeability
lower than 1 or less than 0 have been achieved. Different methods allow the characterization of
metamaterials: by approximation of their equivalent relative permittivity and permeability, or with
their surface impedances at any given height [28–34]. In the space industry, the main advantage of using
metamaterials lies in the reduction of the size and the weight of horn antennas and waveguides [3, 5, 6, 8–
11]. In [35], the rectangular waveguide cross section has been reduced using a new method: the Modal
Expansion Theory (MET).

This method has been developed over the past few years [30–33, 36, 37]. With the MET, the
propagation characteristics of cylindrical and rectangular waveguides with anisotropic walls are quickly
obtained. Moreover, with a combination of the MET code and a 2-D Finite-Element-Method (FEM)
code, it is now possible to deal with waveguides with 2-D metamaterial walls [29–33]. The 2-D FEM code
computes the equivalent surface impedances of the metamaterial. These impedances are dependent on
the frequency, incidence angle, and propagation mode. In these articles [29–33], the MET accuracy and
time efficiency have been well demonstrated, up to 360 time faster than the commercial software HFSS.
However, with this 2-D FEM code, only m = 0 order modes can be determined. Even if such modes
are sometimes used in the space industry — for example, the TM01 mode with a circular symmetric
pattern that is used in signals detection [38], or in communications and satellites positioning [39, 40] —
the fundamental mode is often the TE11, and no hybrid mode can be addressed. Hybrid modes are often
wanted as fundamental mode. As a matter of fact, their radiation pattern is axially symmetric with zero
cross-polarization response and may be shaped for high efficiency [6]. Horn antennas may support such
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modes [41–44]. In [34], the authors propose a 2-D FEM code returning the whole dispersion diagram
of cylindrical waveguides with 2-D metamaterials compared to [31–33]. However, this code [34] and the
2-D MET [31–33] are not adequate to characterize all metamaterials. For this reason and to take all
order modes into account, the MET has been hybridized with a 3-D FEM code. Thus, waveguides with
all metamaterials (with or without θ-invariance) could be characterized through the MET.

In this paper, a new 3-D hybrid numerical technique is proposed to achieve these goals for cylindrical
waveguides. The MET is used to obtain the propagation characteristics of metamaterial waveguides
with a new 3-D FEM solution proposed to compute the surface impedances. This technique is carefully
explained in Section 2. In the final section, the validation of this method is presented. The comparison
point is performed with the FEM commercial software HFSS. Three different cylindrical waveguides are
tested: a transversal corrugated waveguide studied in [31, 36], a longitudinal corrugated waveguide and
the finally a peak-structure metamaterial waveguide.

2. HYBRID NUMERICAL TECHNIQUE FOR 3D-METAMATERIAL WAVEGUIDES
CHARACTERIZATION

In this article, the studied waveguides are cylindrical waveguides with metamaterial walls and an
invariance along the z-axis, see Fig. 1. Consequently, the electromagnetic field has an e−γzz dependence,
where γz is the propagation constant along the z-axis.

Figure 1. Cylindrical waveguide with anisotropic walls.

To characterize this kind of waveguides, the MET is used [29–33]. Indeed, the metamaterial
structuration — whose period is supposed small compared to the wavelength [25] — enables their study
by computing equivalent anisotropic surface impedances. Therefore, the hybrid technique, proposed in
this paper, is composed of the MET main program that solves the dispersion equation and a program
in the open-source software GetDP [45] that computes the surface impedances.

2.1. The Modal Expansion Theory

In the cylindrical coordinate system, the Z ′
T and Z ′

Z surface impedances are defined by Eq. (1).

Z ′
T = −Eθ

Hz

∣∣∣∣
ρ=a

, Z ′
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ρ=a

. (1)

These impedances are then injected in the dispersion Equation (2) determined in [37] and [46] from
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Helmholtz’s equation and the anisotropic conditions.
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where a is the waveguide internal radius, ua = kca, Z0 the free space characteristic impedance, Jm the
Bessel function of order m, and J ′

m the derivative of the Bessel function Jm.
In [30–33, 37], it was pointed out that the Z ′

T and Z ′
Z surface impedances were dependent on the

ϕ incidence angle, defined with the relation in Eq. (3).

ϕ = arcsin
(

β

k0

)
, (3)

where β = −jγz, since only propagating modes were taken into account. In [33], the MET with the 2-D
FEM code has been extended to identify evanescent modes. Further research will lead to characterizing
these modes with the 3-D FEM hybridized MET.

Consequently, the MET algorithm has to solve the dispersion equation with the recursive solution
proposed in Fig. 2. In the third step of the algorithm and for each ϕ0 computed angle, the Z ′

T and Z ′
Z

surface impedances are computed thanks to the GetDP call.

Figure 2. Schematic algorithm to correct the ϕ incidence angle.

2.2. The 3D-Conformal Metamaterial Modelling

The analyzed unit cell is simplified in GetDP compared to HFSS solution since it allows nonparallel
periodic walls definition. This new 3-D unit cell is introduced in the next section. Then the code and
its implementation in the MET are explained.
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2.2.1. The 3D Unit Cell

The waveguides under consideration are, obviously, periodical along the z-axis. In this paper, the
metamaterial is not θ-invariant anymore, compared to [31–33], but periodically set along this axis.
Fig. 3(a) represents a 3-D metamaterial waveguide, with two planes that define the angular periodicity
of the metamaterial. Thus one periodic lattice can be isolated between these planes.

(a) (b)

Figure 3. (a) 3-D metamaterial waveguide and (b) the 3-D unit cell.

With Fig. 3(a) example, the 3-D metamaterial appears 18 times at a given longitunal position,
thus the elementary lattice can be defined with an α angle of 20◦. The 3-D unit cell is represented in
Fig. 3(b).

The lattice is isolated along the z-axis and θ-axis. A periodical condition (4) is imposed between
Γ1 and Γ2 walls. A similar condition (5) is introduced between Γ4 and Γ5 walls.

�U (ρ, θ, z + p)
∣∣∣
Γ2

= �U (ρ, θ, z)
∣∣∣
Γ1

× exp (−γzp), (4)

�U (ρ, θ + α, z)
∣∣∣
Γ5

= �U (ρ, θ, z)
∣∣∣
Γ4

× exp (−jmα) , (5)

where �U is a vector which could be the magnetic field �H or the electric field �E, p the distance between
Γ1 and Γ2, α the angle between Γ4 and Γ5 (as defined on the Fig. 3(b)), and m the mode order. A
surface impedance can be defined on ΓS . In our cases, a PEC condition (the surface impedance is equal
to 0) is applied to this boundary. The Z ′

T and Z ′
Z(1) surface impedances are computed on the Ω′ plane.

h is the height to the Ω′ plane (h = A − a).

2.2.2. The New 3D-Finite Element Method Code

GetDP [45] means general environment for the treatment of Discrete Problems. This program is used to
compute the equivalent surface impedances of the metamaterial. In its main file, the structure definition
and the problem equations are specified.

The periodical conditions (4) between Γ1 and Γ2 and (5) between Γ4 and Γ5 are set in the code as
the PEC condition on ΓS . The problem is solved by using a FEM formulation with edge elements. The
weak formulation (6) used is as follows:∫

V

(
∇2 �E + k2

0
�E
)

vdV = 0 (6)
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where v is the test function, since the Galerkin method is used, and V is the volume described by the
unit cell.

Thanks to a post processing operation, the electric and magnetic fields are returned in the whole
structure. Besides a file is created with the values of these fields on the Ω′ plane. This file is used in
the MET algorithm to compute the surface impedances.

2.2.3. Implementation of the 3D-Code in the MET

As explained before, the GetDP program is called on the third step in the MET algorithm. Hence, calling
it each iteration can be a disadvantage, as it will take a significant computation time. Nevertheless, in
the next part, it will be proven that even using this scheduling the time efficiency is better than using
a commercial software.

3. RESULTS

To validate this method, this hybrid numerical technique is firstly applied to a waveguide with a
2-D metamaterial. This waveguide has corrugations along the θ-axis [31, 36]. Subsequently, a 3-D
metamaterial is studied: corrugation along the z-axis. Finally, the code is applied to a waveguide with
a peak-structure metamaterial. All the dispersion diagrams are compared to those obtained with HFSS.
All simulations were made with the same computer [Intel R©CoreTMi7-7700 CPU @ 3.60 GHz, 16 GB of
RAM].

3.1. HFSS Validation Tool

The eigenmode solver is chosen for this problem. A 3-D unit-cell, see Fig. 4, is created and periodic
boundary conditions are added. A phase delay is included between these two walls, with a scan from 0◦
to 180◦. This solver returns the resonance frequency of each solution (corresponding to a phase delay)
and each mode. Then the propagation constant is computed using the phase delay and the p distant
between the two walls. The analysis setup of the simulations changes with the tested waveguide.

Figure 4. Cylindrical representation of a waveguide with periodic boundary conditions and anisotropic
surface simulated in HFSS.

3.2. Waveguide with Corrugations along the θ-axis

The studied waveguide is represented in Fig. 5(a). Fig. 5(b) shows the corrugation dimensions and the
mesh obtained with GMSH-GetDP [45, 47].

In [31], only m = 0 order modes were displayed on the dispersion diagrams, and in [36] all modes
were found; however, the results between the method proposed and HFSS did not perfectly coincide.
The Fig. 6 represents the new dispersion diagrams obtained with the MET and the GetDP code (dots).

The two diagrams coincide, and all modes are found. Consequently, the MET with the hybrid
numerical technique is validated on this example. In HFSS, the adaptive solution for this waveguide
is set to a maximum Δf of 0.01%. Hence, with HFSS the simulation lasts three days, while with the
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(a) (b)

Figure 5. (a) Corrugated waveguide. The 3-D blue dashed section is used in HFSS, and the 3-D red
part is used in the MET (b) represented with the mesh. The dimensions are A = 100 mm, a = 80 mm,
h = 20 mm, p = 26.225 mm, w = 20.98 mm, d = 18.2 mm and α = 20◦.

Figure 6. Dispersion diagrams of the cylindrical waveguide with the corrugation presented in Fig. 5(a)
obtained with the MET + 3-D FEM code (dots), the MET + 2-D FEM code [31] (triangles) and HFSS
(circles).

MET it lasts 4 hours and 30 min. As explained before, the computation time with the MET with
GetDP is longer than the MET with the 2-D FEM code [31] (10-min computation time), represented
with triangles in Fig. 6, because the software is called each iteration. Moreover, the frequency step is
not the same. Indeed, in the MET the frequency is imposed, then the incidence angle is evaluated to
give the propagation constant. In HFSS, the incidence angle is imposed and the frequency evaluated.

3.3. Waveguide with Corrugations along the z-axis

Corrugations along the z-axis are now inserted in a waveguide, see Fig. 7(a).
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(a) (b)

Figure 7. (a) Corrugated waveguide along the z-axis. The 3-D blue dashed section is used in HFSS, and
the 3-D red part is used in the MET (b) represented with the mesh. The dimensions are A = 100 mm,
a = 80 mm, h = 20 mm, p = 26.225 mm, d = 18.2 mm and α = 30◦.

Figure 8. Dispersion diagrams of the cylindrical waveguide with the corrugation presented in Fig. 7(a)
obtained with MET (dots) and HFSS (circles).

The α angle also conditions the number of metamaterials. In this example, α = 30◦, thus, there
are twelve corrugations (360◦/α = 12). The different dimensions and the mesh of the 3-D unit cell used
in the MET are represented in Fig. 7(b).

The algorithm is applied to this waveguide, and the dispersion diagrams are compared to HFSS
ones in Fig. 8. It took 40 min to obtain the dispersion diagrams with HFSS while with the MET it only
required a 21-min computation time. Therefore, the MET is still 2 times faster. It can be noted that
the simulation on HFSS is drastically reduced compared to the previous case. As a matter of fact, for
this waveguide Δfmax = 0.05%, otherwise the simulation crashed due to a lack of memory space. The
difference in the dispersion diagrams between the two methods is small: the gap between the MET and
HFSS increases with the m order mode.
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3.4. Waveguide with Peak-Structure Metamaterial

Finally, a 3-D peak-structure metamaterial waveguide is tested with this hybrid numerical technique,
see Fig. 9(a). Fig. 9(b) (i) represents the dimensions and the mesh used in the MET, and Fig. 9(b) (ii)
displays the PEC part of the unit cell. As α = 20◦, there are 18 peak-structures in a cross-section.

(a) (b)

Figure 9. (a) Waveguide with the peak-structure metamaterial. The 3-D blue dashed section is used
in HFSS, and the 3-D red part is used in the MET (b) represented with the mesh. The dimensions are
(i) A = 30 mm, a = 15 mm, h = 15 mm, p = 10 mm; (ii) for the ΓS part (the PEC boundary) of the 3-D
unit cell with d = 8 mm, α = 20◦, and w = 8mm.

Figure 10. Dispersion diagrams of the cylindrical waveguide with the corrugation presented in Fig. 9(a)
obtained with MET (dots) and HFSS (circles).

The dispersion diagrams of this waveguide are represented in Fig. 10. The HFSS diagram is still
represented with circles, while the dots are associated with the MET diagram. Using the MET, the
dispersion diagram was obtained in 1 hour and 16 min, compared to HFSS, with Δfmax = 0.01%, which
lasts around three days. Again the two dispersion diagrams coincide.

This new method has allowed plotting the whole dispersion diagrams of all kinds of metamaterial
waveguides. Moreover, the proposed method is at least twice as fast as the FEM commercial software
for 0.05% error criteria on HFSS and 16 times faster for 0.01% error criteria.
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4. CONCLUSION

In this article, the MET has been uploaded with a hybrid numerical technique using an open software:
GetDP. The new algorithm has been successfully applied to three different waveguides: one with a 2-D
metamaterial (a corrugation along the θ-axis), and two with a 3-D metamaterial. As a consequence, the
MET is now completely developed to characterize cylindrical waveguides with various metamaterials.
Furthermore, the computation time is significantly reduced compared to commercial software.

The MET is currently used to reduce the cross-section of a cylindrical sensor working at the
frequency band 6–8 GHz. As a matter of fact, the reduction of the cross-section of sensor is mandatory
to decrease its impact on the measurement of a testing antenna.

Moreover, the characterization of evanescent modes is also under development. To characterize
horn antenna with a mode-matching technique, these modes are also required. With the mode-matching
technique, it will also be possible to deal with metamaterials that change along the z-axis. Such a kind
of metamaterial is useful for improving the matching between the feeding access and the waveguide, or
to avoid an abrupt termination of a horn antenna or an open-ended waveguide.
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