1. Pendry, J. B., et al., "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773, 1996.
doi:10.1103/PhysRevLett.76.4773
2. Pendry, J. B., et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002
3. Valentine, J., et al., "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376, 2008.
doi:10.1038/nature07247
4. Landy, N. I., et al., "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
5. Schurig, D., et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628
6. Enoch, S., et al., "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902
7. Chen, H. T., et al., "Active terahertz metamaterial devices," Nature, Vol. 444, No. 7119, 597, 2006.
doi:10.1038/nature05343
8. Lu, D. and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nature Communications, Vol. 3, 1205, 2012.
doi:10.1038/ncomms2176
9. Wakatsuchi, H., et al., "Circuit-based nonlinear metasurface absorbers for high power surface currents," Applied Physics Letters, Vol. 102, No. 21, 214103, 2013.
doi:10.1063/1.4809535
10. Wakatsuchi, H., et al., "Waveform-dependent absorbing metasurfaces," Physical Review Letters, Vol. 111, No. 24, 245501, 2013.
doi:10.1103/PhysRevLett.111.245501
11. Wakatsuchi, H., et al., "Experimental demonstration of nonlinear waveform-dependent metasurface absorber with pulsed signals," Electronics Letters, Vol. 49, No. 24, 1530-1531, 2013.
doi:10.1049/el.2013.3010
12. Wakatsuchi, H., et al., "Responses of waveform-selective absorbing metasurfaces to oblique waves at the same frequency," Scientific Reports, Vol. 6, 31371, 2016.
doi:10.1038/srep31371
13. Wakatsuchi, H., "Time-domain filtering of metasurfaces," Scientific Reports, Vol. 5, 16737, 2015.
doi:10.1038/srep16737
14. Eleftheriades, G. V., "Electronics: Protecting the weak from the strong," Nature, Vol. 505, No. 7484, 490, 2014.
doi:10.1038/nature12852
15. Xu, H. X., et al., "Tunable microwave metasurfaces for high-performance operations: Dispersion compensation and dynamical switch," Scientific Reports, Vol. 6, 38255, 2016.
doi:10.1038/srep38255
16. Genevet, P., et al., "Recent advances in planar optics: From plasmonic to dielectric metasurfaces," Optica, Vol. 4, No. 1, 139-152, 2017.
doi:10.1364/OPTICA.4.000139
17. Balthasar Mueller, J. P., et al., "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Physical Review Letters, Vol. 118, No. 11, 113901, 2017.
doi:10.1103/PhysRevLett.118.113901
18. Khorasaninejad, M., et al., "Polarization-insensitive metalenses at visible wavelengths," Nano Letters, Vol. 16, No. 11, 7229-7234, 2016.
doi:10.1021/acs.nanolett.6b03626
19. Byrnes, S. J., et al., "Designing large, high-efficiency, high-numerical-aperture, transmissive metalenses for visible light," Optics Express, Vol. 24, No. 5, 5110-5124, 2016.
doi:10.1364/OE.24.005110
20. Filippo, C., A. Monorchio, and G. Manara, "Wideband scattering diffusion by using diffraction of periodic surfaces and optimized unit cell geometries," Scientific Reports, Vol. 6, 25458, 2016.
21. Xu, H. X., et al., "Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking," Annalen der Physik, Vol. 529, No. 5, 1700045, 2017.
doi:10.1002/andp.201700045
22. Zhao, J., et al., "Fast design of broadband terahertz diffusion metasurfaces," Optics Express, Vol. 25, No. 2, 1050-1061, 2017.
doi:10.1364/OE.25.001050
23. Zhang, Y., et al., "Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution," Scientific Reports, Vol. 6, 26875, 2016.
doi:10.1038/srep26875
24. Miller, P., "Ka-band — The future of satellite communication," TELE-Satellite and Broadband, Vol. 1, No. 9, 12-14, 2007.
25. Padilla, P., "Electronically reconfigurable transmit array at Ku band for microwave applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2571-2579, 2010.
doi:10.1109/TAP.2010.2050426
26. Borji, A., D. Busuioc, and S. Safavi-Naeini, "Efficient, low-cost integrated waveguide-fed planar antenna array for Ku-band applications," IEEE Antenna and Wireless Propagation Letters, Vol. 8, 336-339, 2009.
doi:10.1109/LAWP.2008.2004973
27. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650
28. Reid, D. R. and G. S. Smith, "Design and optimization of Fresnel zone plates using a genetic algorithm and a full-electromagnetic simulator," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2223-2227, 2009.
doi:10.1002/mop.24520
29. Scott, M. M., et al., "Permittivity and permeability determination for high index specimens using partially filled shorted rectangular waveguides," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1298-1301, 2016.
doi:10.1002/mop.29786
30. Allen, K. W., et al., "An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity," Review of Scientific Instruments, Vol. 87, 054703, 2016.
doi:10.1063/1.4948388
31. Monticone, F. and A. Alu, "Invisibility exposed: Physical bounds on passive cloaking," Optica, Vol. 3, No. 7, 718-724, 2016.
doi:10.1364/OPTICA.3.000718
32. Maloney, J. G., R. T. Lee, and D. W. Landgren, "Genetic algorithms for fragmented aperture antennas: A complete evaluation of a 24-bit design," Radio Science Meeting (Joint with IEEE AP-S Symposium), 2013 USNC-URSI, 115-115, 2013.
doi:10.1109/USNC-URSI.2013.6715421
33. Munk, B. A., Frequency Selective Surface Theory and Design, Wiley & Sons, 2000.
doi:10.1002/0471723770
34. Reid, D. R. and G. S. Smith, "A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space focused-beam measurement system," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 499-507, 2009.
doi:10.1109/TAP.2008.2011392