Vol. 90
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-07
Analysis of ``False Non Reciprocity'' in 2-Port VNA Measurements of Reciprocal Devices
By
Progress In Electromagnetics Research M, Vol. 90, 1-8, 2020
Abstract
The effect of measurement errors in the S-matrix of a reciprocal 2-port device is recognized in the (usually low) difference between S12 and S21, as the device were nonreciprocal. This ``false non-reciprocity'' is analyzed in the present paper, and it is verified that, for low loss device, the difference acts principally on the phases of S12 and S21. This anomaly can be removed if a numerical correction is applied to the experimental S-matrix. In doing so, it is proved that the residual measurement errors have comparable amplitudes on all scattering parameters.
Citation
Leonardo Zappelli, "Analysis of ``False Non Reciprocity'' in 2-Port VNA Measurements of Reciprocal Devices," Progress In Electromagnetics Research M, Vol. 90, 1-8, 2020.
doi:10.2528/PIERM19110903
References

1. Zappelli, L., "Equivalent circuits of lossy two-port waveguide devices," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 4095-4106, Oct. 2019.
doi:10.1109/TMTT.2019.2931553

2. Chen, C. and T. Chu, "Accuracy criterion for s-matrix reconstruction transforms on multiport networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 9, 2331-2339, Sep. 2011.
doi:10.1109/TMTT.2011.2160082

3. Zappelli, L., "Reconstruction of the S-matrix of n-port waveguide reciprocal devices from 2-port VNA measurements," Progress In Electromagnetics Research B, Vol. 72, 129-148, 2017.
doi:10.2528/PIERB16102402

4. Carlin, H., "On the physical realizability of linear non-reciprocal networks," Proceedings of the IRE, Vol. 43, No. 5, 608-616, May 1955.
doi:10.1109/JRPROC.1955.278106

5. Carlin, H., "The scattering matrix in network theory," IRE Transactions on Circuit Theory, Vol. 3, No. 2, 88-97, Jun. 1956.
doi:10.1109/TCT.1956.1086297

6. Youla, D., L. Castriota, and H. Carlin, "Bounded real scattering matrices and the foundations of linear passive network theory," IRE Transactions on Circuit Theory, Vol. 6, No. 1, 102-124, Mar. 1959.
doi:10.1109/TCT.1959.1086518

7. Youla, D., "Direct single frequency synthesis from a prescribed scattering matrix," IRE Transactions on Circuit Theory, Vol. 6, No. 4, 340-344, Dec. 1959.
doi:10.1109/TCT.1959.1086571

8. Carlin, H. and D. Youla, "Network synthesis with negative resistors," Proceedings of the IRE, Vol. 49, No. 5, 907-920, May 1961.
doi:10.1109/JRPROC.1961.287934

9. Carlin, H. and D. Youla, "The realizability of the complex ideal transformer," IRE Transactions on Circuit Theory, Vol. 9, No. 4, 412, Dec. 1962.
doi:10.1109/TCT.1962.1086967

10. Carlin, H., "On the existence of a scattering representation for passive networks," IEEE Transactions on Circuit Theory, Vol. 14, No. 4, 418-419, Dec. 1967.
doi:10.1109/TCT.1967.1082748

11. Zappelli, L., "Identification of equivalent circuit based on polygon network for nonreciprocal lossy n-port device," Progress In Electromagnetics Research B, Vol. 77, 1-20, 2017.
doi:10.2528/PIERB17040307

12. https://www.keysight.com/us/en/assets/7018-03314/data-sheets/5990-9783.pdf.