Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-22
Fast Multiplication of Matrix-Vector by Virtual Grids Technique in AIM
By
Progress In Electromagnetics Research Letters, Vol. 89, 85-90, 2020
Abstract
In order to accelerate the speed of matrix-vector product (MVP) in iteration process for adaptive integral method (AIM), a virtual grids technique (VGT) with the multi-dimensional fast Fourier transform (FFT) is proposed. By adding some uniform virtual grids outside the original region, the indexes of nonzeros in the projection matrix are modified so as to eliminate the padding and unpadding procedures in MVP. The advantages of this method are that first it will not occupy any extra memory, and second it makes the Green's function vector compressed from (2Nx - 1)(2Ny - 1)(2Nz - 1) to 8(Nx - 1)(Ny - 1)(Nz - 1) because of its symmetrical block-Toeplitz property. Numerical results show that per iteration time could be reduced more than 30% by applying this method in comparison with the conventional AIM, without losing accuracy. In addition, the peak memory consumption could also be reduced because the intermediate vectors are eliminated.
Citation
Mingxuan Zheng, Huiling Zhao, and Zhonghui Zhao, "Fast Multiplication of Matrix-Vector by Virtual Grids Technique in AIM," Progress In Electromagnetics Research Letters, Vol. 89, 85-90, 2020.
doi:10.2528/PIERL19110802
References

1. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE Press, New York, 1993.
doi:10.1109/9780470544631

2. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, October 1997.
doi:10.1109/8.633855

3. Chew, W. C., T. J. Cui, and J. M. Song, "A FAFFA-MLFMA algorithm for electromagnetic scattering," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 11, 1641-1649, January 2002.
doi:10.1109/TAP.2002.802162

4. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, September 1996.
doi:10.1029/96RS02504

5. Yang, K. and A. E. Yilmaz, "An FFT-accelerated integral-equation solver for analyzing scattering in rectangular cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 9, 1930-1942, September 2014.
doi:10.1109/TMTT.2014.2335176

6. Wang, X., S. X. Gong, J. Ma, and C. F. Wang, "Efficient analysis of antennas mounted on largescale complex platforms using hybrid AIM-PO technique," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1517-1523, March 2014.
doi:10.1109/TAP.2013.2296326

7. Wang, X., D. H. Werner, and J. P. Turpin, "Investigation of scattering properties of large-scale aperiodic tilings using a combination of the characteristic basis function and adaptive integral methods," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3149-3160, June 2013.
doi:10.1109/TAP.2013.2250474

8. Ling, F., V. I. Okhmatovski, W. Harris, S. McCracken, and A. Dengi, "Large-scale broad-band parasitic extraction for fast layout verification of 3-D RF and mixed-signal on-chip structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 264-273, January 2005.
doi:10.1109/TMTT.2004.839907

9. Barrowes, B. E., F. L. Teixeira, and J. A. Kong, "Fast algorithm for matrix-vector multiply of asymmetric multilevel block-toeplitz matrices," IEEE Transactions on Antennas and Propagation Society International Symposium, 630-633, Boston, USA, MA, July 2001.