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Fast Multiplication of Matrix-Vector by Virtual Grids Technique
in AIM
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Abstract—In order to accelerate the speed of matrix-vector product (MVP) in iteration process for
adaptive integral method (AIM), a virtual grids technique (VGT) with multi-dimensional fast Fourier
transform (FFT) is proposed. By adding some uniform virtual grids outside the original region, the
indexes of nonzeros in the projection matrix are modified so as to eliminate the padding and unpadding
procedures in MVP. The advantages of this method are that first it will not occupy any extra memory,
and second it makes the Green’s function vector compressed from (2Nx − 1)(2Ny − 1)(2Nz − 1) to
8(Nx − 1)(Ny − 1)(Nz − 1) because of its symmetrical block-Toeplitz property. Numerical results show
that per iteration time could be reduced more than 30% by applying this method in comparison with
the conventional AIM, without losing accuracy. In addition, the peak memory consumption could also
be reduced because the intermediate vectors are eliminated.

1. INTRODUCTION

In the past decades, many fast methods, based on method of moment (MoM) [1], have been
proposed to solve large-scale electromagnetic problems, such as the multilevel fast multipole algorithm
(MLFMA) [2, 3], AIM [4–7], and its close counterpart, the precorrected fast fourier transformation
(P-FFT) [8]. MLFMA and AIM both can reduce the computational complexity from O(N2) to
O(N log(N)), and the memory requirements from O(N2) to O(N). However, AIM is less dependent on
the integral kernels than MLFMA. This feature makes it easier to implement with the standard and
efficient fast Fourier transform (FFT) libraries available online.

In AIM, to accelerate MVP during each iteration by one-dimensional (1D) FFT [9], the block-
Toeplitz matrix on auxiliary grids must be formulated as a circular Toeplitz matrix. This suggests
that the vector should be padding zeros before FFT and unpadding zeros after inverse fast Fourier
transform (IFFT). However, the strategies of the two procedures are rather complicated, which would
consume a lot of extra CPU instructions to copy data. In addition, some temporary vectors would be
created explicitly to keep the intermediate results. Consequently, the speed of MVP would be slowed
down severely when more and more auxiliary grids are required to solve the large-scale problems via an
iterative solver.

To overcome these drawbacks, in this paper, a virtual grids technique is proposed to accelerate the
MVP with the help of multi-dimensional FFT. Different from the 1D FFT in [9], the proposed method
would eliminate the procedures of padding and unpadding zeros, which could save not only time but
also the temporary memory during MVP. Moreover, compared with the traditional multi-dimensional
FFT involved in AIM [4], the length of the circular vector is 8(Nx −1)(Ny −1)(Nz −1) for 3D problems
when electric field integral equation (EFIE) is used, which is slightly less than the one required in the
traditional AIM (2Nx − 1)(2Ny − 1)(2Nz − 1), where Nx, Ny, Nz are the numbers of grids in x, y, z
directions, respectively. Furthermore, without much modification, the proposed method is friendly to
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incorporate into the existing code, because it is independent of basis functions, integral kernels, and the
solver.

The rest of this paper is organized as follows. Section 2 briefly reviews AIM and the MVP by 1D
FFT. In Section 3 the virtual grids technique with multi-dimensional FFT is detailed. Some numerical
results are given in Section 4 to validate the accuracy and efficiency of the proposed method, and Section
5 concludes this paper.

2. FORMULATIONS

For an arbitrary 3D perfect electric conductor (PEC) structure, the conventional MoM is applied to
form a linear system as

ZI = V (1)

where I is the current coefficients of basis functions, V the excitation, and Z the impedance matrix. To
reduce the memory requirements of Z and computational complexity in solving Eq. (1) with an iterative
solver, AIM divides the impedance matrix into near and far matrices as Z = Znear +Zfar. The detailed
definition of Znear could be found in [4], and only Zfar is compressed as the multiplications of several
sparse matrices

Zfar =
∑

u=x,y,z,d

ΛuGΛT
u (2)

where G is the block-Toeplitz transformation matrix on the auxiliary grids, and Λ is the sparse
projection matrix to construct a relationship between basis functions and global auxiliary grids. The
order of G is the number of all the grids NC = Nx × Ny × Nz, and the size of Λ is N × NC , where N
is the number of the basis functions. Then, the MVP in AIM could be written as

Ii+1 = ZnearIi +
∑

u=x,y,z,d

ΛuIFFT{FFT[G] ◦ FFT[ΛT
u Ii]} (3)

where ◦ denotes the Hadamard product operator. In fact, it is impossible to save the whole G since
NC � N . Instead, the block-Toeplitz G is saved as G̃ = FFT[G]. As a result, for 3D electromagnetic
problems, it is necessary to transform G into a circular Toeplitz matrix before FFT, which means that
the total length of sequences G̃ is increased from NC to NFFT = (2Nx−1)(2Ny −1)(2Nz −1). Fig. 1(a)
illustrates the details of MVP for the second term on the right side of Eq. (3) by 1D FFT [9]. Firstly,
the intermediate vector is derived by VNC

= ΛT I. To realize the procedure of padding zeros, a new
vector VNF F T

with length NFFT is initialized by zeros, and the complex values are copied from VNC

to the appropriate positions of VNF F T
. Then VNF F T

is operated by FFT, Hadamard product with G̃
and IFFT. Finally, the useful values are extracted from VNF F T

and written back into VNC
through

unpadding procedure. To finish MVP, I is rewritten by the multiplication of Λ and VNC
.

In the above method, there are two problems that influence the performance of MVP. The first
one is the copy operations between VNF F T

and VNC
involved in padding and unpadding procedures.

The second one is the requirement of a temporary vector VNC
for keeping the intermediate results.

When NC is increased, the former will slow down the speed of MVP, and the later will increase the
peak memory requirements during iteration. To reduce both the computational complexity and memory
requirements without any extra memory, the virtual grids technique is introduced in the next section.

3. VIRTUAL GRIDS TECHNIQUE

Before introducing the virtual grids technique, it is important to illustrate the transformation of G
firstly. To meet the circular property of the block-Toeplitz, the length of Green’s function vector g
should be enlarged from NC to NFFT = (2Nx −1)(2Ny −1)(2Nz −1) before FFT. Due to the symmetry
of G when EFIE is applied, i.e., G1,Nx,y,z is equal to GNx,y,z,1, then the length of the vector g′ could
be slightly reduced from NFFT to N ′

FFT = 8(Nx − 1)(Ny − 1)(Nz − 1). Two examples of 1D (Nx = 4)
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and 2D (Nx = Ny = 3) Green’s function vectors are given as

1D: g = [ g1 g2 g3 g4 ]T to g′ = [ g1 g2 g3 g4 g3 g2 ]T (4)

2D: g =

(
g1 g4 g7

g2 g5 g8

g3 g6 g9

)
to g′ =

⎛
⎜⎝

g1 g4 g7 g4

g2 g5 g8 g5

g3 g6 g9 g6

g2 g5 g8 g5

⎞
⎟⎠ (5)

where g and g′ are the first row of original and circular block-Toeplitz matrix. It is worthy to note
that g′ is saved column by column in 2D cases. Compared with the original vector g with grids of
Nx ×Ny × Nz, the modified g′ is just copying Nx − 2, Ny − 2, Nz − 2 values from g in each direction.

To eliminate the procedures of padding and unpadding in Fig. 1(a), the virtual grids technique
is designed to perform the two procedures implicitly through a modified projection matrix Λm. The
complicated strategies are moved into Λm through changing the indexes of nonzeros. The intermediated
vector VNC

is not required any more, and then the copy operations would also be eliminated. For
simplicity, as shown in Fig. 2, a 2D scatterer is surrounded by the auxiliary grids denoted by circles
with Nx = 8, Ny = 5. The size of Λ is N ×NC , where NC = 40. Then the virtual grids represented by
crosses are added outside the original region. As a result, the whole region becomes larger than before,
so that the size of Λm becomes N × N ′

FFT , where N ′
FFT = 4(Nx − 1)(Ny − 1) = 112. This indicates

that the indexes of the nonzeros should be changed to fit the new region.
Fortunately, the coefficients of these virtual grids in Λm are all zeros since none of the basis

functions are expanded on the virtual grids. It seems that the so-called virtual grids do not exist for
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Figure 1. (a) 1D FFT and (b) n-dimensional FFT with virtual grids technique in MVP. The block
vector C denote the useful values and X are ignored during unpadding.

Figure 2. The original grids and extra virtual
grids (Nx = 8, Ny = 5), where the PEC scatterer
is depicted in gray.

Figure 3. Comparison of the bistatic RCS by Mie
series and the proposed method for a conducting
sphere of radius 6λ.
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Λm, which means that the memory requirements and the computational complexity of Λm are not
increased compared to Λ. Only the indexes of nonzeros in Λm and Λ are different.

Next, as shown in Fig. 1(b), with the help of virtual grids technique, zeros are padded automatically
in the correct positions of VN ′

F F T
by the multiplication of ΛT

m and I. The copy operations are saved
for the first time. After FFT, Hadamard product with G̃ and IFFT, VN ′

F F T
is multiplied by Λm to

extract useful values C implicitly, then these values are written back into I to finish MVP. There is
no contribution from block vector X since the coefficients in Λm related to X are all zeros. This is
the second time to eliminate the copy operations. On the other hand, compared with the method in
Fig. 1(a), the proposed method eliminates the temporary vector VNC

. It is easy to estimate that the
computational complexity of copy operations and memory requirements of the temporary vector VNC

are O(NC), which would influence the performance of MVP dramatically when NC is quite large.

4. NUMERICAL SIMULATIONS

To demonstrate the performance of the proposed method for the scattering problems, all the simulations
are solved by the stabilized biconjugate gradient (Bi-CGSTAB) with the relative residual error less than
10−4. The grid interval is 0.05λ; the grid order is 2; and the near threshold is 0.3λ. All the numerical
experiments are performed on the desktop PC of four cores 4790 Intel processors with math kernel
library to calculate 1D and 3D FFT. The first and second examples are simulated to verify the accuracy
of the proposed method, and the last one is to validate the performance of time and memory reduction
in iterations.

The first example is a PEC sphere of radius 6λ illuminated by a plane wave from azimuthal angle
(θ, ϕ) = (0, 0) with x -axis polarization. The number of unknowns of the sphere is 128,571, and the
number of auxiliary grids is 14,348,907 which will occupy about 875 MB extra memory to keep four
intermediated vectors VNC

if the original MVP is applied. Fig. 3 shows that the proposed method
agrees well with Mie series in the bistatic radar cross section (RCS).

To further verify the accuracy of the proposed method, the second example is a PEC hourglass
located on the xoy plane illuminated by a incident plane wave from (θ, ϕ) = (π/2, 0) with z -axis
polarization. As shown from left-top corner of Fig. 4(a), the top and bottom radii of the hourglass are
4λ; the radius of the junction circle in the middle is 1λ; and the height is 8λ, which is discretized by
140,661 basis functions. It can be seen from Fig. 4 that the bistatic RCSs of this hourglass in horizontal
and vertical planes calculated by the proposed method agree well with MLFMA.
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Figure 4. Comparison of RCS calculated by MLFMA and the proposed method for the hourglass in
(a) horizontal, (b) vertical planes.
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Figure 5. The module of the assembly of cubic
and six half-spheres. The lengths of box are
chosen as 2λ, 6.5λ and 10.5λ represented by CS2,
CS6.5 and CS10.5 respectively.

Figure 6. The comparison of the peak memory
requirements during MVP with and without
VGT.

The last example is an assembly of cubic and six half-spheres (CS) in different sizes as shown
in Fig. 5. CS2, CS6.5, and CS10.5 denote the lengths of the box, which are 2λ, 6.5λ, and 10.5λ,
respectively. To validate the performance of the proposed method in MVP, the plots of RCSs of these
examples are omitted for redundancies. Table 1 summarizes the performance of CS in different sizes,
the sphere, and hourglass with and without VGT in terms of per iteration CPU time. Obviously, the
iteration time rises as the grid number increases. Compared with the far part, the time consumptions
by the near part are less than 1% for all examples and can be ignored. The per iteration time of CS10.5
is slightly longer than sphere because there are more unknowns even though the grid number is lower.
Compared with iteration time without VGT, the proposed method could reduce more than 30% time
in all examples, especially for the hourglass, whose time is only 8.53 s but 20.47 s without VGT. On
the other hand, the peak memory requirements of these examples during MVP are shown in the Fig.
6, which mainly include the consumptions of Znear, four projection matrices Λ, G̃ and the temporary
vectors VNC

for the original AIM. It can be seen from Fig. 6 that the memory requirements are rising
as the grid number increases. The peak memory of all the examples without VGT is slightly higher
than the ones with VGT, because the extra memory is consumed by the intermediated vector. This
phenomenon becomes more and more apparent when the grid number is larger. In conclusion, without
losing accuracy, the proposed method could reduce not only the time but also memory requirements
during MVP.

Table 1. Iteration time for different examples.

Example Grid number Unknowns

Seconds per iteration

Time reduction
Near part

Far part

without VGT

Far part

with VGT

CS2 43 × 43 × 43 5 781 0.003 0.30 0.20 33%

CS6.5 133 × 133 × 133 61 062 0.026 8.89 4.48 49%

CS10.5 213 × 213 × 213 156 390 0.070 43.42 29.26 32%

Sphere 243 × 243 × 243 128 571 0.041 41.69 28.16 32%

Hourglass 163 × 163 × 163 140 661 0.064 20.40 8.46 58%



90 Zheng, Zhao, and Zhao

5. CONCLUSION

In this paper, the virtual grids technique combined with the multi-dimensional FFT is designed to
accelerate the MVP during iteration in AIM. Through adding the virtual grids, the projection matrix
is modified to eliminate the padding and unpadding procedures without any extra memory. The
compressed Green’s function vector in the proposed method is also slightly less than the one in the
1D FFT if EFIE is used. Moreover, since this method is independent of basis functions and integral
kernel, it is easily incorporated into the existing code. The numerical results show that the proposed
method agrees well with the analytical solution of sphere and the results of MLFMA. Compared with
the original AIM, the per iteration time of the proposed method could save more than 30%, at most
58% for the example of hourglass. Also, the peak memory requirements is less than the one without
VGT due to the elimination of the intermediated vector.
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