1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, New York, N.Y., Jun. 2006.
doi:10.1126/science.1125907
2. Kwon, D.-H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol. 52, No. 1, 24-46, 2010.
doi:10.1109/MAP.2010.5466396
3. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Progress in Optics, Vol. 53, No. 8, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3
4. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, Vol. 8, No. 7, 568, 2009.
doi:10.1038/nmat2461
5. Ergin, T., N. Stenger, Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, 1186351, 2010.
6. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nature Photonics, Vol. 3, No. 8, 461, 2009.
doi:10.1038/nphoton.2009.117
7. Liu, R., C. Ji, J. Mock, J. Chin, T. Cui, and D. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
doi:10.1126/science.1166949
8. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-fundamentals and Applications, Vol. 6, No. 1, 87-95, 2008.
9. Li, J. and J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking," Physical Review Letters, Vol. 101, No. 20, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901
10. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature communications, Vol. 1, 124, 2010.
doi:10.1038/ncomms1126
11. Roberts, D., N. Kundtz, and D. Smith, "Optical lens compression via transformation optics," Optics Express, Vol. 17, No. 19, 16535-16542, 2009.
doi:10.1364/OE.17.016535
12. Rahm, M., D. Roberts, J. Pendry, and D. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Optics Express, Vol. 16, No. 15, 11555-11567, 2008.
doi:10.1364/OE.16.011555
13. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Physical Review Letters, Vol. 100, No. 6, 063903, 2008.
doi:10.1103/PhysRevLett.100.063903
14. Kwon, D.-H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Optics Express, Vol. 16, No. 23, 18731-18738, 2008.
doi:10.1364/OE.16.018731
15. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational b-spline surfaces," Applied Physics Letters, Vol. 92, No. 26, 264101, 2008.
doi:10.1063/1.2951485
16. Yang, J., M. Huang, C. Yang, Z. Xiao, and J. Peng, "Metamaterial electromagnetic concentrators with arbitrary geometries," Optics Express, Vol. 17, No. 22, 19656-19661, 2009.
doi:10.1364/OE.17.019656
17. Schurig, D., J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628
18. Hu, J., X. Zhou, and G. Hu, "Design method for electromagnetic cloak with arbitrary shapes based on laplace's equation," Optics Express, Vol. 17, No. 3, 1308-1320, 2009.
doi:10.1364/OE.17.001308
19. Berry, E. A., J. J. Gutierrez, and R. C. Rumpf, "Design and simulation of arbitrarily-shaped transformation optic devices using a simple finite-difference method," Progress In Electromagnetics Research, Vol. 68, 1-16, 2016.
20. Chen, H., C. T. Chan, and Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, No. 5, 387, 2010.
doi:10.1038/nmat2743
21. Mei, Z.-L., J. Bai, T. M. Niu, and T.-J. Cui, "A planar focusing antenna design with the quasi-conformal mapping," Progress In Electromagnetics Research, Vol. 13, 261-273, 2010.
doi:10.2528/PIERM10053102
22. Pendry, J. B., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773, 1996.
doi:10.1103/PhysRevLett.76.4773
23. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002
24. Pedrola, G. L., Beam Propagation Method for Design of Optical Waveguide Devices, John Wiley & Sons, 2015.
doi:10.1002/9781119083405
25. Basser, J., J. Mattiello, and D. LeBihan, "Mr diffusion tensor spectroscopy and imaging," Biophysical Journal, Vol. 66, No. 1, 259-267, 1994.
doi:10.1016/S0006-3495(94)80775-1
26. Nye, J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, 1985.
27. Kuprel, B. and A. Grbic, "Anisotropic inhomogeneous metamaterials using nonuniform transmission-line grids aligned with the principal axes," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 358-361, 2012.
doi:10.1109/LAWP.2012.2191257
28. Lam, T. A., D. C. Vier, J. A. Nielsen, C. G. Parazzoli, and M. H. Tanielian, "Steering phased array antenna beams to the horizon using a buckyball nim lens," Proceedings of the IEEE, Vol. 99, No. 10, 1755-1767, 2011.
doi:10.1109/JPROC.2011.2128290
29. Ansys, H., "v15," ANSYS Corporation Software, Pittsburgh, PA, USA, 2014.
30. Smith, D. R., S. Schultz, Markoš, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104
31. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608
32. Liu, R., T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, "Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory," Physical Review E, Vol. 76, No. 2, 026606, 2007.
doi:10.1103/PhysRevE.76.026606
33. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617
34. Barton, J. H., C. R. Garcia, E. A. Berry, R. Salas, and R. C. Rumpf, "3-d printed all-dielectric frequency selective surface with large bandwidth and field of view," IEEE Transactions on Antennas and Propagation, Vol. 63, 1032-1039, March 2015.
doi:10.1109/TAP.2015.2388541
35. Fraser, A. S., "Simulation of genetic systems by automatic digital computers vi. epistasis," Australian Journal of Biological Sciences, Vol. 13, No. 2, 150-162, 1960.
doi:10.1071/BI9600150
36. Clerc, M., Particle Swarm Optimization, Vol. 93, John Wiley & Sons, 2010.
37. Rumpf, R. C., C. R. Garcia, E. A. Berry, and J. H. Barton, "Finite-difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects," Progress In Electromagnetics Research, Vol. 61, 55-67, 2014.
doi:10.2528/PIERB14071606
38. Rumpf, R. C. and J. Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, No. 14, 15263-15274, 2012.
doi:10.1364/OE.20.015263
39. Rumpf, R. C., "Engineering the dispersion and anisotropy of periodic electromagnetic structures," Solid State Physics, Vol. 66, 213-300, Elsevier, 2015.
40. Rumpf, R. C., J. Pazos, C. R. Garcia, L. Ochoa, and R. Wicker, "3d printed lattices with spatially variant self-collimation," Progress In Electromagnetics Research, Vol. 139, 1-15, 2013.
doi:10.2528/PIER13030507
41. Rumpf, R. C., J. J. Pazos, J. L. Digaum, and S. M. Kuebler, "Spatially variant periodic structures in electromagnetics," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, No. 2049, 20140359, 2015.
doi:10.1098/rsta.2014.0359
42. Greville, T., "Some applications of the pseudoinverse of a matrix," SIAM Review, Vol. 2, No. 1, 15-22, 1960.
doi:10.1137/1002004
43. Noble, B. and J. W. Daniel, Applied Linear Algebra, 3rd Ed., Prentice Hall, 1988.
44. Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075