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Generating Spatially-Variant Metamaterial Lattices Designed
from Spatial Transforms

Eric A. Berry and Raymond C. Rumpf*

Abstract—Spatial transform techniques like transformation optics and conformal mapping have arisen
as the dominant techniques for designing metamaterial devices. However, these techniques only produce
the electrical permittivity and permeability as a function of position. The manner in which these
functions are converted into physical metamaterial lattices remains elusive, except in some simple or
canonical configurations. Metamaterial lattices designed by spatial transforms are composed of elements
of different sizes, orientations, and designs. The elements must be distributed and oriented in a manner
that makes the final lattice smooth, continuous, have uniform density, be free of unintentional defects,
and have minimal distortions to the elements. Any of these would weaken or destroy the electromagnetic
properties of the lattice. This paper describes a general purpose method to generate such arbitrary
metamaterial lattices. Inputs to the algorithm are the permittivity and permeability functions as well
as the baseline metamaterials that can provide the necessary permittivity and permeability values.
In prior research, we reported a simple finite-difference technique for calculating the permittivity and
permeability functions for arbitrary shaped devices using transformation optics. The methodology
presented in this work is illustrated by generating an electromagnetic cloak of arbitrary shape that
was designed using the previously reported technique. The final metamaterial cloak is simulated using
the finite-difference time-domain method and performance compared to other cloaks reported in the
literature.

1. INTRODUCTION

Spatial transform techniques, like transformation optics (TO) and conformal mapping, use coordinate
transforms to sculpt electromagnetic fields and direct the flow of waves within a device [1–3]. All of
these techniques aim to encapsulate the effects of the spatial transformation into the material properties
of the device. The output of these methods are permittivity and permeability as a function of position,
that if realized would sculpt the fields and direct the flow of waves according to the original transform.
This level of control over the electromagnetic fields allows devices such as cloaks [4–9], lenses [10, 11],
tight bends [12], beam splitters [2, 13, 14], concentrators [8, 15, 16], and many others [2] to be designed.

The vast majority of devices designed to date using TO have been derived using analytical
expressions [2, 17]. Analytical expressions, however, are fundamentally limited in the coordinate
transforms they can describe. In prior research, based in part on Ref. [18], we developed a fully
numerical technique for implementing TO that is able to design devices of any shape defined only
by its boundaries [19]. Figure 1(a) shows the boundaries of an arbitrary electromagnetic cloak.
The permittivity and permeability tensors for this device were calculated using this approach. The
permittivity and permeability functions that come from TO are generally fully anisotropic tensors [20].
To physically realize such materials, it is necessary to determine a coordinate system in which the
tensors can be represented as diagonal matrices.
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To manufacture a device designed using TO, materials must be obtained which have the same
electromagnetic response as that of the material tensors derived from TO. The permittivity and
permeability values that come out of TO are typically not achievable using naturally occurring
materials [4, 21]. Metamaterials are currently the best option for realizing the required material
properties [22, 23]. However, it is often still not possible to realize the most extreme constitutive values.
In some cases, it is possible to simplify the operating parameters for the device in order to mitigate
the most extreme material properties. For the electromagnetic cloak shown in Figure 1 the device was
designed to operate at 12 GHz for an electric field polarized in the positive z direction. Restricting
the polarization in this manner allows the material properties to be simplified in the same manner as
described in Ref. [17] to only require three tensor components rather than the entire permittivity and
permeability tensors. If other polarizations are desired, metamaterial selection and parameter retrieval
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Figure 1. (a) Boundaries of an arbitrary TO cloak designed. (b) Diagonalized permittivity and
permeability tensors calculated using approach in Ref. [19].

As described in Ref. [19]

As described in this paper

Figure 2. Block diagram of metamaterial design process using TO and spatially-variant lattices to
generate the physical lattice of the device.
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methods must take these polarizations into consideration. However, for the intent of demonstrating
the lattice synthesis techniques described in this paper, those discussions are beyond the scope of this
article.

The overall methodology presented in this paper is summarized in Figure 2. As described in
Ref. [19], the spatial variation shown in Step 1 is generated by calculating a coordinate transformation
based on solving Laplace’s equation for an arbitrary boundary value problem. Step 2 is implemented
using the equations of TO with the numerically generated coordinate transformation from Step 1. This
paper will focus on the bottom half of Figure 2. The material tensors derived in Step 2 are assigned
to metamaterials based on the response necessary. The proper scaling for the metamaterial is chosen
by optimization to match the effective material properties throughout the device. The metamaterial
elements are then placed in the device by using a spatially-variant lattice to ensure that the arrangement
of elements is smooth, continuous, and free of defects.

2. MAP PERMITTIVITY AND PERMEABILITY TO ENGINEERED MATERIALS

2.1. Tensor Diagonalization

The orientation of the coordinate system in which the off-diagonal tensor elements vanish is known as
the principal axes of the material [24, 25]. The principal axes and the diagonalized constitutive values
can be determined by solving an eigenvalue problem [24, 26, 27] throughout the device. The eigenvalues
are the permittivity or permeability in the direction of the associated eigenvector. The eigenvectors are
known as the principal axes of the anisotropic material. Figure 1(b) shows the diagonalized material
tensor for the cloak where the vectors â, b̂, and ĉ are the principal axes of the material tensors.

2.2. Metamaterial Mapping

Given the diagonalization information discussed in the previous section, it is necessary to identify
metamaterial element designs that can realize the constitutive values at each point in the device. For
illustration purposes, the present work utilized the magnetic-electric LC (MELC) structure presented
in Ref. [28] because it is highly resonant it provides a wide range of values applicable to this device, but
at a single frequency with neglibible bandwidth. The metamaterial element is shown in Figure 3.
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Figure 3. (a) MELC unit cell with the dimensions d = 3.0mm, w = 0.25mm, g = 0.25mm, l = 0.6mm,
c = 0.25mm. (b) The spacing between structures is p = 0.25mm and the conductor thickness is
t = 0.25mm.

To determine the full range of constitutive values made possible by our choice of metamaterial
element, a parameter sweep was performed to calculate the constitutive values as a function of scale.
The scale in the x and z directions was swept from 0.01 times the nominal dimensions to 1.0 times
the nominal dimensions in 0.01 increments using Ansys Electronics Workbench [29]. After parameter
retrieval [30–33], a two dimensional map of both the permittivity and permeability, the real part of
which is shown in Figure 4, were generated as a function of the scaling of each structure shown in
Figure 3(b). The variables Scale1 and Scale2 were the scaling value for the structure in the negative
and positive y direction respectively.
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Figure 4. Parameter retrieval maps of εz and µy for the metamaterial shown in Figure 3.

Given the constitutive values as a function of scale, we calculated the scale of the metamaterial
element throughout the device that would best realize the required values for permittivity and
permeability. It was not possible to achieve an exact match so the scales were chosen to minimize
the error term δ in Eq. (1) at each point (i, j) throughout the device material maps. Other optimization
techniques such as genetic algorithm (GA) [34, 35] or particle swarm optimization (PSO) [36] can be
used to select the optimal metamaterial scales. For the cloak shown in Figure 1 simplified for a z
polarized electric field, as described previously, the constitutive material values of concern are εb and
µc from Figure 1(b).

δ (i, j) =
∣∣εb (i, j)− ε′z

∣∣ +
∣∣µc (i, j)− µ′y

∣∣ (1)

Figure 5 shows the final mapping used for the electromagnetic cloak. The terms labeled “Fit µc”
and “Fit εc” are actual constitutive values that are realized by scaling the MELC element. This is not
an exact match to what is prescribed by TO so an electromagnetic simulation was performed using an
anisotropic finite-difference frequency-domain (AFDFD) method [19, 37]. The results of this simulation
are presented in a later section.

Figure 5. Device mapping with scale values in the left column, constitutive parameters of the device
from TO in the center column, and constitutive parameter of the scaled metamaterial in the right
column.
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3. GENERATING SPATIALLY-VARIANT METAMATERIAL LATTICES

3.1. Generating Spatially-Variant Lattices On Nonuniform Grids

Given the metamaterial elements and their scaling and orientation as a function of position, it is
necessary to determine where the elements should be placed. These locations should be chosen in
a manner that gives a smooth lattice, avoids defects, and maintains a uniform density of elements
throughout the device despite the variations in size, geometry, and spacing. A method for doing this was
developed by modifying a previously reported algorithm for generating spatially-variant lattices [38–41].
The original algorithm decomposes the unit cells into a set of planar gratings which are each spatially
varied throughout the device and then added to get the final lattice. The metamaterial elements used
for this research would require many thousands of spatial harmonics to resolve the very fine features of
the metallic elements. As a faster alternative, two planar gratings were spatially varied to follow the
principle axes of the metamaterials and to accommodate variations in element size. The metamaterial
elements were then placed at the intersections of these two planar gratings. This alternative approach
required a nonuniform and circulating grid that conformed to the boundaries of the cloak, as shown in
Figure 6.

(i, j )

 

Figure 6. Solving ∇Φ = ~K on a nonuniform spatially-variant grid.

The algorithm for spatially varying a single planar grating begins by defining its grating vector
function ~K (~r), or K-function. The K-function is a vector function that conveys both the orientation
and period of the grating. The direction of the K-function is set equal to one of the principle axes of
the diagonalized tensors throughout the lattice. The magnitude of the K-function is set to 2π divided
by the scale of the MELC elements throughout the lattice. Given this, the grating phase throughout
the device is calculated by solving Eq. (2) for Φ (~r).

∇Φ(~r) = ~K (~r) (2)
Following the procedure outlined in Ref. [39], the solution can be obtained using the finite-difference
method. In finite-difference form, Eq. (2) can be expressed in two-dimensions as[

Dx

Dy

]
Φ =

[
kx

ky

]
(3)

where Dx, and Dy are square derivative matrices, and kx and ky are column vectors containing the
components of the K-function throughout the entire grid. In the modified algorithm, however, the
finite-difference operators Dx and Dy must be constructed to operate on a nonuniform grid. An array
is constructed of all of the x and y coordinates of the grid. Considering the cutaway section of the grid
shown in Figure 6, the grating phase at each point corresponding to the array indices (i, j) on the grid
can be fit to the following linear function

Φi,j (x, y) = ai,jx + bi,jy + ci,j (4)
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Deriving the first-derivative of Eq. (4) with respect to x and then to y leads to

∂Φi,j (x, y)
∂x

= ai,j
∂Φi,j (x, y)

∂y
= bi,j (5)

The coefficients ai,j , bi,j , and ci,j are determined in Eq. (5) by solving a small matrix equation
formed by writing Eq. (4) for the M ∗N points in the vicinity of the point designated by the element
(i, j). For points that are evaluated on the boundary of the grid only those points which are neighboring
are used to form the matrix equation as illustrated in Figure 6. The solution in Eq. (5) requires the use
of a pseudoinverse [42].




Φi,j

Φi−1,j
...

ΦM,N


 =




xi,j yi,j 1
xi−1,j yi−1,j 1

...
xM,N yM,N 1







ai,j

bi,j

ci,j


 −→




ai,j

bi,j

ci,j


 =

[
αi,j αi−1,j αM,N

βi,j βi−1,j . . . βM,N

γi,j γi−1,j γM,N

]



Φi,j

Φi−1,j
...

ΦM,N


 (6)

Substituting the expressions for ai,j and bi,j into Eq. (5), the following expressions are derived.

∂Φi,j (x, y)
∂x

= ai,j ≈ αi,jΦi,j + αi−1,jΦi−1,j + . . . + αM,NΦM,N (7)

∂Φi,j (x, y)
∂y

= bi,j ≈ βi,jΦi,j + βi−1,jΦi−1,j + . . . + βM,NΦM,N (8)

where α and β are the components of the first and second rows respectively of the pseudoinverse matrix
in Eq. (6). The finite-difference matrices Dx and Dy in Eq. (3) are constructed by placing the values
of α and β in the ith row in the columns corresponding to the positions xi,j and yi,j .

With the derivative matrices and grating vectors constructed, the grating phase Φ is found by
solving the equation

Φ =
[
Dx

Dy

]−1 [
kx

ky

]
(9)

using least squares [43].

3.2. Metamaterial Lattice Construction

To determine the position and spacing of the metamaterial elements which will compose the device
described thus far, Eq. (9) is solved for both the â and ĉ principal axes. Figure 7 shows the planar
gratings generated from the procedures described in the previous section and Ref. [38]. Figure 7(c) is
the sum of the â and ĉ directed planar gratings which is used to determine the points of intersection of
the two gratings.

The intersection of the two planar gratings determined the position of the metamaterials in
the device and the orientation of the metamaterial element was determined by interpolating the
angle of principal axes at the position where the element was placed. Likewise, the scaling for the
metamaterial element was calculated by interpolating the scales resulting from the material mapping
to the metamaterial element position.

From there, the algorithm iterated through each point identified as an intersection of the two planar
gratings. A surface mesh of the basic MELC elements was generated as a list of faces and vertices. The
mesh was scaled to the appropriate size at the point to give the desired permittivity and permeability.
The mesh was then rotated using rotation matrices to put the mesh in the correct orientation. Last,
the mesh was shifted so as to be centered at the point. At the end, all of these meshes were combined
into a single mesh and saved as standard tessellation language (STL) file common in the 3D printing
industry. The final device with all the elements positioned properly is shown in Figure 8.
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Figure 7. Planar gratings generated by solving Eq. (3) for both the â (a) and ĉ (b) principal axes. (c)
Sum of the planar gratings in (a) and (b) used to determine points of intersection between the gratings.

Figure 8. Cloak generated using the metamaterial elements shown in Figure 3 and spatially varied
according using the lattice generated in Figure 7.

Figure 9. Transformation optics cloak with metamaterial elements arranged using a masked uniform
Cartesian lattice.
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To illustrate the benefit of using a spatially-variant lattice, the device designed above was also
implemented using a Cartesian grid. First, a uniform lattice of points spaced with the lattice spacing
of the nominal MELC unit cell (3.333 mm) was created. This uniform lattice was masked with the
outline of the cloaking device being designed. Using the algorithm described previously in this chapter,
the position, orientation, and scaling were determined on the Cartesian lattice. The metamaterial
elements were placed uniformly on the Cartesian grid and the resulting device is shown in Figure 9.
The Cartesian cloak has two deficiencies when compared to the device designed using the spatially-
variant lattice. First, the spatially-variant lattice conforms to the boundaries of the cloak, whereas
the Cartesian cloak has very sharp features because of the rectangular grid on which the materials
are placed. Another drawback of the Cartesian device is that the effective material properties of the
metamaterial elements are diluted when they undergo a rotation. This is because the Cartesian grid
does not compensate for the rotation of the unit cell, but only the material elements. The rotation of
the metamaterial unit cells is accounted for in the construction of the spatially-variant lattice, therefore
the spatially-variant lattice eliminates overlapping unit cells, while the Cartesian device has unit cells
which overlap in some positions.

4. SIMULATIONS

Figure 10 shows the anisotropic finite-difference frequency-domain (AFDFD) [37] simulation of the
device using only the real part of the metamaterial parameters.

x

Figure 10. AFDFD simulation of the cloak with only the real part of the material parameters used.

To verify the effectiveness of the metamaterial cloak shown in Figure 8, a means of simulating the
entire structure was necessary. The finite-difference time-domain (FDTD) method was chosen because
the memory required for simulating large grids is much lower than other methods such as finite element
method (FEM) and FDFD. FDTD was used to perform the simulation of the discrete element cloak
shown in Figure 8. The STL file created for the device was imported as a finite difference mesh and a
uniaxial perfectly matched layer boundary condition [44] was applied on all boundaries of the grid. A
cross section of the electric field from this simulation is provided in Figure 11. The final device did not
perform nearly as cleanly as the effective media cloak shown in Figure 10. Through simulation, this was
found to be primarly due to the losses inherent in the metamaterial unit cells. This same problem can
be see in the cloak designed in Ref. [17], highlighting the limitations of currently existing metamaterial
elements.
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Figure 11. FDTD simulation of cloak shown in Figure 8.

5. CONCLUSION

The ability to spatially vary metamaterials to implement transformation electromagnetic devices will
allow devices to be designed that are currently not realizable. Building upon the techniques presented
previously in Ref. [19] to generate transformation optics devices numerically using a simple finite-
difference method, the transformation media for a device to be designed can be determined using a
fully numerical approach. This method makes it possible to design devices with arbitrary geometries
defined only by the device boundaries. Additionally, the tools to simulate the effective media model of
the device using the finite-difference time-domain and the anisotropic finite-difference frequency-domain
methods [19] were discussed.

A method of determining the scaling for each metamaterial element corresponding to the material
parameter to be represented was discussed within the context of designing an arbitrary metamaterial
cloak to demonstrate the toolchain presented. Spatially-variant lattices were discussed as a method
of placing the discrete metamaterial elements within the lattice in a manner which preserves the
electromagnetic properties of the metamaterial unit cells. This technique allows devices to be
constructed using metamaterial atoms that vary in size throughout the grid. The positions of the
metamaterial elements are determined by calculating the intersections of the spatially-variant lattice.
The orientation and scale of the elements are calculated by interpolating the values found by the
metamaterial mapping operation and principal axes to the position identified by the intersection of the
gratings. The final device designed using this method is then simulated using FDTD.

While the method presented in this research will produce a device based on the material
parameters determined through transformation optics, the effectiveness of such a device is limited
by the metamaterials which are available to implement it. As metamaterials are designed with more
bandwidth and lower loss, the range of applications will expand as will their efficiency.
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