Vol. 88
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-14
Time-Domain Analysis of Overhead Line in Presence of Stratified Earth
By
Progress In Electromagnetics Research M, Vol. 88, 133-144, 2020
Abstract
The presence of the ground affects the propagation on overhead lines through a magnetically induced earth return current. Numerous researches have been conducted to study this influence by considering a homogeneous earth. In the current paper, the transient response of Multi-conductor transmission Lines (MTL) considering a lossy stratified earth is presented. Based on the finite difference time-domain (FDTD) and an improvement of the convolution integral arising from time-domain modeling of frequency-dependent conductors' parameters through the Vector Fitting (VF) algorithm, a novel numerical procedure for solution of a system of telegraph equations is presented. Many simulations are introduced to highlight the effect of soil stratification on the response of the line for a given excitation. The efficiency of an equivalent model, using an equivalent single-conductor, of a multiple conductor system is also established in this work.
Citation
Ayoub Lahmidi, and Abderrahman Maaouni, "Time-Domain Analysis of Overhead Line in Presence of Stratified Earth," Progress In Electromagnetics Research M, Vol. 88, 133-144, 2020.
doi:10.2528/PIERM19101503
References

1. Carson, J. R., "Wave propagation in overhead wires with ground return," Bell Syst. Tech. J., Vol. 5, 539-554, 1926.
doi:10.1002/j.1538-7305.1926.tb00122.x

2. Pollaczek, F., "Uber das feld einer unerdlich langen wechselstrom-durchflossenen Einfachleitung," Elect. Nachr. Tech., Vol. 9, 339, 1926.

3. Wise, W. H., "Propagation of high frequency currents in ground return circuits," Proc. Inst. Radio Eng., Vol. 22, 522-527, 1934.
doi:10.1109/JRPROC.1934.226359

4. Sunde, E. D., Earth Conduction Effects in Transmission Systems, 99-139, 2nd Edition, Dover Publications, 1968.

5. Papadopoulos, T. A., K. Papagiannis, and D. P. Labridis, "A generalized model for the calculation of the impedances and admittances of overhead power lines above stratified earth," Electric Power Systems Research, Vol. 80, 1160-1170, 2010.
doi:10.1016/j.epsr.2010.03.009

6. Nakagawa, N., A. Ametani, and K. Iwamoto, "Further studies on wave propagation in overhead lines with earth return: Impedance of stratified earth," Proc. IEE, Vol. 120, No. 12, 1521-1528, 1973.

7. Agrawal, A. K., H. J. Price, and S. H. Gurbaxani, "Transient response of multiconductor transmission line excited by a nonuniform electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, 119-129, 1980.
doi:10.1109/TEMC.1980.303824

8. Djorjevic, A. R., T. S. Sarkar, and R. F. Harrington, "Time domain response of multiconductor transmission lines," Proc. IEEE, Vol. 75, No. 6, 119-764, June 1987.

9. Paul, C. R., Analysis of Multiconductor Transmission Lines, Ch. 5, New York, Wiley, 1994.

10. Rachidi, F., C. A. Nucci, and M. Ianoz, "Transient analysis of multiconductor lines above a lossy ground," IEEE Trans. Electromagn., Vol. 14, No. 1, January 1999.

11. Kordi, B., J. Lovetri, and G. E. Bridges, "Finite-difference analysis of dispersive transmission lines within a circuit simulator," IEEE Trans. Electromagn. Compat., Vol. 21, No. 1, January 2006.

12. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency-domain responses by vector fitting," IEEE Trans. Power Del., Vol. 14, No. 3, 1052-1061, July 1999.
doi:10.1109/61.772353

13. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antenaas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

14. Belganche, Z., A. Maaouni, A. Mzerd, and A. Bouziane, "Equivalent model from two layers stratified media to homogeneous media for overhead lines," Progress In Electromagnetics Research M, Vol. 41, 63-72, 2015.
doi:10.2528/PIERM14121509

15. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

16. Bridges, G. E. J. and L. Shafai, "Plane wave coupling to multiple conductor transmission lines above a lossy earth," IEEE Trans. On Electromagn. Compat., Vol. 31, No. 1, 21-33, February 1989.
doi:10.1109/15.19904

17. Ametani, A., N. Nagaoka, Y. Baba, T. Ohno, and K. Yamabuki, Power System Transients: Theory and Applications, CRC Press, 2013.
doi:10.1201/b15816

18. Davidson, D. B., Computational Electromagnetics for RF and Microwave Engineering, 6–7, Cambridge University Press, Cambridge, United Kingdom, 2005.

19. Nakagawa, M., "Further studies on wave propagation along overhead transmission lines: Effect of admittance correction," IEEE Transactions on Power Apparatus and Systems, Vol. 100, July 1981.

20. Kikuchi, H., "Electromagnetic field on infinite wire at high frequencies above plane-wave," IEE Japan, Vol. 77, No. 825, 721-733, 1959.

21. Kikuchi, H., "Wave propagation on the ground return circuit in high frequency regions," J. IEE Japan, Vol. 75, No. 805, 1176-1187, 1955.

22. Borecki, M., J. Starzyski, and Z. Krawczyk, "The comparative analysis of selected overvoltage protection measures for medium voltage overhead lines with covered conductors," Progress in Applied Electrical Engineering (PAEE), 1-4, 2017.