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Time-Domain Analysis of Overhead Line in presence
of Stratified Earth

Ayoub Lahmidi and Abderrahman Maaouni*

Abstract—The presence of the ground affects the propagation on overhead lines through a magnetically
induced earth return current. Numerous researches have been conducted to study this influence by
considering a homogeneous earth. In the current paper, the transient response of Multi-conductor
transmission Lines (MTL) considering a lossy stratified earth is presented. Based on the finite
difference time-domain (FDTD) and an improvement of the convolution integral arising from time-
domain modeling of frequency-dependent conductors’ parameters through the Vector Fitting (VF)
algorithm, a novel numerical procedure for solution of a system of telegraph equations is presented.
Many simulations are introduced to highlight the effect of soil stratification on the response of the line
for a given excitation. The efficiency of an equivalent model, using an equivalent single-conductor, of a
multiple conductor system is also established in this work.

1. INTRODUCTION

Electromagnetic transient calculation of overhead transmission lines is strongly influenced by ground
losses. Many studies have treated this influence by calculating the earth return impedance to evaluate
the ground conduction effects on transmission line propagation. Carson [1] and Pollaczek [2] have
studied the impedance of a homogeneous earth without considering the displacement currents in the air
and the ground. Wise in [3] has included this effect, but this influence changes when we have a stratified
earth. Sunde [4] extended the solution of the earth return impedance for the case of two-layers earth,
but in this approach, the effect of propagation has been neglected. A more rigorous solution has been
presented by Papadopoulos et al. [5] and Nakagawa [6]. The two studies have included the effect of
propagation of current, but Nakagawa has, in addition, introduced the earth return impedance for
3-layers earth in his paper.

Transient analysis of transmission lines can be dealt with either in the time-domain or in the
frequency-domain. A time-domain approach allows handling in more straightforward way non-linearities
in power-transmission systems such as surge arresters, transmission-line shunt parameters, saturable
inductors, and fault arcs. A general way to directly obtain the time domain response of the transmission
line is the use of the FDTD method [7, 8]. The derivatives in the MTL equations can be approximated
by a time-space second order central finite difference scheme, and the equations can be solved in a
leapfrog fashion [9]. Rachidi et al. in [10] have presented an FDTD solution of the coupling equations
to calculate the lightning induced voltages in lossy transmission line above a homogeneous ground.
The Sunde ground impedance is adopted in conjunction with a judicious numerical treatment of the
singularity emanating from the inverse Fourier transform of the ground impedance to derive a more
appropriate form of coupling equations in which there is no longer a singular term. But the use of
Sunde approximation makes the result less accurate for the reason quoted in the beginning of this
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section. An efficient method was proposed by Kordi et al. [11], in which they had presented an
FDTD formulation capable of modeling a dispersive frequency-dependent transmission line within a
circuit/system simulator taking into account the losses of a homogeneous ground. Each conductor of
the line is modeled as two-port stamp which only includes resistive elements and dependent current
sources.

The scope of this paper is the time-domain analysis of an overhead arrangement considering the
frequency-dependent behavior of the stratified earth in the framework of the quasi-TEM approximation.
The Nakagawa model for the earth return impedance solution and the FDTD method are used to
characterize the transient behavior on overhead lines. The use of the FDTD method requires that
all parameters must be in the time-domain including the earth return impedance. The vector fitting
algorithm proposed by Gustavsen and Semlyen in [12] is employed to transform those parameters into
time domain. This transformation deals with a convolution integral of impedance solution and time
derivatives of currents. Moreover, in the FDTD method, the spatial resolution Δz and time step Δt
must be chosen according to the following stability condition [13] (the Courant-Friedrich-Levy (CFL)
condition):

Δt ≤ Δz

vp
(1)

where vp is the maximum wave phase velocity within the MTL.
Since the problem treated in this paper involves inhomogeneous medium. The FDTD method allows

a very straightforward treatment of this kind of problem compared to the method of moment (MoM),
which is more efficient for the homogeneous medium. Davidson [18] gives two tables comparing the
FDTD, MoM, and the finite elements FEM techniques in the way they are normally implemented. One
table is for both open regions (radiation and scattering problems), and another table is for guided wave
problems. In this work, a novel recursive FDTD scheme is introduced, which relies on the piecewise
polynomial functional dependence over 2Δt, which is more rigorous than the piecewise linearization
used by Kordi et al. [11], in calculating the convolution integral. Finally an equivalent model, using an
equivalent single-conductor of a multiple conductor system is also established.

2. FORMULATION OF TRANSMISSION LINE EQUATIONS

The general layout of a system consisting of N overhead conductors located above a three-layer earth
structure is shown in Fig. 1. The conductors of the same radius r are located at a position xi and a
height yi (i = 1, 2, . . . , N) parallel to z-axis. The jth layer has permittivity εj = ε0εrj and conductivity
σj. The air has a permeability μ0 and permittivity ε0 equal to those of the free space. All layers are of
permeability μi = μ0 (i = 1, 2, 3). The 3rd layer is considered to be of infinite depth.

Assuming quasi-TEM mode of propagation, the overhead line depicted in Fig. 1 is described in the
Laplace s-domain by the two matrix Equations (2) and (3), linking the voltages and currents of the line,

∂Ĩ(z, s)
∂z

+ YṼ(z, s) = 0 (2)

∂Ṽ(z, s)
∂z

+ ZĨ(z, s) = 0 (3)

where Ṽ is the voltage vector, Ĩ the current vector, and z the longitudinal direction along the
transmission line. Matrices Z and Y are the frequency dependent series impedance and shunt admittance
per unit length matrices, respectively. s is the complex Laplace variable.

For the case of an overhead cable system, Z may be considered to consist of two components [11, 14]

Z = Zw + Ze (4)

where Zw represents the per-unit-length internal impedances of the conductors in the cable system. For
thin solid conductors, Zw is defined as [15]

Zw,mn � δmn

(
kwn

2πrσwn

)
I0(kwnr)
I1(kwnr)

, δmn =
{

1, m = n
0, m �= n
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(a) (b)

Figure 1. Geometry of multiconductor transmission line above a stratified earth. (a) Geometric
configuration of overhead conductors. (b) Cross section of the wired structure.

where kwn =
√

sμwn(σwn + sεwn), and μwn, εwn, σwn are the electrical parameters characterizing the
nth conductor. I0, I1 are the modified Bessel functions. Ze accounts for the influence of the earth
return path and is expressed as follows

Ze = sL +
sμ0

π
J (5)

where L is the classical inductance matrix per unit length of the line whose elements are:

Lmn =
μ0

2π
ln

(
ρ∗mn

ρmn

)
, (6)

with ρmn =
√

(xm − xn)2 + (ym − yn)2 and ρ∗mn =
√

(xm − xn)2 + (ym + yn)2. For a single conductor
ρmn = r and ρ∗mn = 2yn (m = n). Matrix J represents the conduction losses in the ground. According
to Nakagawa [6] model for the three-layer earth, J can be expressed as follows

Jmn =
∫ ∞

0
χ(s)e−(ym+yn)ν cos(|xm − xn|ν)dν (7)

where

χ(s) =
c1 + c2

(ν + μ0b1)c1 + (ν − μ0b1)c2
(8)

c1 = (b1 + b2)(b2 + b3) + (b1 − b2)(b2 − b3) × e−2a2(d1−d2)

c2 =
(
(b1 − b2)(b2 + b3) + (b1 + b2)(b2 − b3) × e−2a2(d1−d2)

)
× e−2a1d1

ai =
√

v2 + k2
i − k2, bi = ai/μi, i = 1, 2 and 3

In Eq. (8), k and ki =
√

sμi(σi + sεi) (i = 1, 2 and 3) are the propagation constants in the air and in
the ith layer, respectively.

The admittance matrix Y is generally expressed using a capacitive term and another one in
integrals form representing displacement current losses in the earth. In most practical cases, whether
for homogeneous or stratified soil, the displacement current in the soil is negligible compared to the
conduction current [6, 16]. However, depending on the earth resistivity and conductor height, the
admittance for the imperfectly conducting earth should be considered especially in a high-frequency
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region when a transient involves a transition between TEM wave and TM/TE waves. Indeed, as
indicated in [19], the return ground admittance due to a lossy ground affects the attenuation on
conductors. At low frequencies, there is no difference between with and without the admittance
correction including displacement current effect. When the frequency increases, the attenuation with the
admittance correction starts to decrease due to the skin effect of the conductors at a critical frequency.
This behavior corresponds to the transition between TEM and TM/TE modes, as Kikuchi pointed
out in [20, 21]. This limits the used analytical earth return impedance model to only a few MHz.
Other approaches, mainly the MOM-SO and FEM methods are used to overcome this limitation by
correctly capturing skin, proximity, and ground effects, which are important factors for the analysis of
the overhead line overvoltage [22]. Therefore, the quasi-TEM approach leads to the following well-known
admittance used in steady-state and transient analysis on an overhead line [17]:

Y � sε0μ0L−1 (9)

3. IMPROVED FDTD ALGORITHM DERIVATION

In order to facilitate the transformation to the time domain of the transmission line equations a rational
approximation of Z(s), which is based on the frequency response analysis data points, can be performed
using the Vector Fitting (VF) algorithm presented by Gustavsen and Semlyen in [12]; thus, Eq. (4) can
be fitted using a sum of M first order poles pi with corresponding residues γi to reach the following
expression

Z = Z′(s) + s(D + L) + R (10)

where

Z′(s) =
M∑
i=1

γi

(s − pi)

The residues γi and poles pi are either real quantities or come in complex conjugate pairs, while D
and R are a proportional term and a constant term, respectively. By inserting Eq. (10) in Eq. (3), the
inverse Laplace transform of MTL equations can be expressed as follows:

∂I(z, t)
∂z

+ C
∂V(z, t)

∂t
= 0 (11)

∂V(z, t)
∂z

+ (D + L)
∂I(z, t)

∂t
+ R I(z, t) + Z′(t) � I(z, t) = 0 (12)

where C = μ0ε0L−1, and the symbol � represents the convolution operator.
According to [11, 9], the convolution was performed using the time-domain derivative of the current

instead of the current

Z′(τ) � I(z, t) =
∫ t

0
Z′(τ)dτ � ∂I(z, t)

∂t
(13)

By inserting Eq. (13) in Eq. (12) and evaluating the integral of Z′, it is easy to show that

∂V(z, t)
∂z

+ (L + D)
I(z, t)

∂t
+ (R − Ω)I(z, t) + φ(t) � ∂

∂t
I(z, t) = 0 (14)

where

Ω =
M∑
i=1

γi

pi
(15)

φ =
M∑
i=1

γi

pi
epit (16)

To solve the MTL Equations (11) and (14) directly in time domain, the FDTD method presented
in [9, 11] is improved to solve the currents and voltages along the line. The transmission line is divided
into K segments, each of length Δz. The current and voltage nodes are defined according to the discrete
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Figure 2. Voltage and current along the transmission line according to the discrete difference format
π-type leapfrog.

difference format of π-type leapfrog as shown in Fig. 2. The current nodes are indicated by arrows,
and voltage nodes are represented by dots. The distance between them is half the size, Δz/2. The two
ends, separated by a length l, are supposed to be connected to resistive circuits.

The second-order time-space central difference approximations to Eqs. (11) and (14) lead to the
following relationships

I
n+ 1

2

k+ 1
2

− I
n+ 1

2

k− 1
2

Δz
+ C

Vn+1
k − Vn

k

Δt
= 0 (17)

Vn
k+1 −Vn

k

Δz
+ (L + D)

I
n+ 1

2

k+ 1
2

− I
n− 1

2

k+ 1
2

Δt
+ (R − Ω)

I
n+ 1

2

k+ 1
2

+ I
n− 1

2

k+ 1
2

2

+
∫ nΔt

0
φ(τ)

∂

∂(nΔt − τ)
Ik+ 1

2
(nΔt − τ)dτ = 0 (18)

where k and n are the space and time indices, respectively. In order to obtain the transient current on

an overhead line above a stratified earth, we need to solve Eq. (17) for Vn+1
k , Eq. (18) for I

n+ 1
2

k+ 1
2

, and

appropriately calculate the convolution integral given in Eq. (18).
In dealing with the convolution integral, previous formulations such as those presented in [9] and [11]

have assumed that the time derivative of the current (TDC) at data point k + 1/2 is either constant
or linear over each time interval Δt. Greater accuracy can be achieved, however, if TDC is assumed to
have a piecewise polynomial functional dependence over 2Δt. In this work, the piecewise polynomial
approximation to the continuous time derivative of the current over a given interval [(m−1)Δt, (m+1)Δt]
is expressed in terms of the time values ∂tIk+ 1

2
(t−(m−1)Δt), ∂tIk+ 1

2
(t−mΔt) and ∂tIk+ 1

2
(t−(m + 1) Δt)

as

∂

∂t
Ik+ 1

2
(t − τ) =

∂

∂t
Ik+ 1

2
(t − mΔt) +

∂
∂tIk+ 1

2
(t − (m + 1) Δt) − ∂

∂tIk+ 1
2
(t − (m − 1) Δt)

2Δt
(τ − mΔt)

+
∂
∂tIk+ 1

2
(t−(m+1)Δt)−2 ∂

∂tIk+1
2
(t−mΔt)+ ∂

∂tIk+1
2
(t−(m−1) Δt)

2Δt2
(τ−mΔt)2 (19)

Approximating the time derivatives of Ik+ 1
2

in Eq. (19) with the central difference scheme at nΔt and
substituting the result into the convolution integral, considering definition of φ in Eq. (16), we get after
some manipulation

φ(t) � ∂

∂t
Ik+ 1

2
(t)

∣∣∣∣
t=nΔt

=
M∑
i=1

γi

pi

∑
1≤m≤n,

m odd

(Amχm
i + Bmξm

i + Cmηm
i ) (20)



138 Lahmidi and Maaouni

where

Am = I
n−m+ 1

2

k+ 1
2

− I
n−m− 1

2

k+ 1
2

(21a)

Bm = I
n−m− 1

2

k+ 1
2

− I
n−m− 3

2

k+ 1
2

− I
n−m+ 3

2

k+ 1
2

+ I
n−m+ 1

2

k+ 1
2

(21b)

Cm = 3I
n−m− 1

2

k+ 1
2

− I
n−m− 3

2

k+ 1
2

+ I
n−m+ 3

2

k+ 1
2

− 3I
n−m+ 1

2

k+ 1
2

(21c)

In Eq. (21c), In−m+j

k+ 1
2

stands for I((k + 1
2 )Δz, (n − m + j)Δt), j = ±1

2 ,±3
2 . The quantities χm

i , ξm
i and

ηm
i are defined by

χm
i =

1
Δt

∫ (m+1)Δt

(m−1)Δt
epiτ dτ (21d)

ξm
i =

1
2Δt2

∫ (m+1)Δt

(m−1)Δt
epiτ (τ − mΔt) dτ (21e)

ηm
i =

1
2Δt3

∫ (m+1)Δt

(m−1)Δt
epiτ (τ − mΔt)2 dτ (21f)

and can be calculated recursively as

χm
i =

2epimΔt sinh piΔt

piΔt
(22a)

χm
i = e2piΔtχm−2

i (22b)

ξm
i =

epimΔtΔt(piΔt cosh(piΔt) − sinh(piΔt))
(piΔt)2

(22c)

ξm
i = e2piΔtξm−2

i (22d)

ηm
i =

epimΔt
(−2piΔt cosh(piΔt) +

(
2 + (piΔ)2

)
sinh(piΔt)

)
(piΔt)2

(22e)

ηm
i = e2piΔtηm−2

i (22f)
Now, Eq. (20) can be rearranged in the following form

φ(t) � ∂

∂t
Ik+ 1

2
(t)

∣∣∣∣
t=nΔt

=
M∑
i=1

γi

pi

[(
A1χ

1
i + B1ξ

1
i + C1η

1
i

)
+ Ψn

i

]
where

Ψn
i =

n∑
m=3
m odd

(Amχm
i + Bmξm

i + Cmηm
i )

and

A1 = I
n− 1

2

k+ 1
2

− I
n− 3

2

k+ 1
2

(23a)

B1 = I
n− 3

2

k+ 1
2

− I
n− 5

2

k+ 1
2

− I
n+ 1

2

k+ 1
2

+ I
n− 1

2

k+ 1
2

(23b)

C1 = 3I
n− 3

2

k+ 1
2

− I
n− 5

2

k+ 1
2

+ I
n+ 1

2

k+ 1
2

− 3I
n− 1

2

k+ 1
2

(23c)

Using Eqs. (22b), (22d), and (22f), a recursion relation for the quantity Ψn
i can be derived and is of the

form

Ψn
i =

(
I
n− 5

2

k+ 1
2

− I
n− 7

2

k+ 1
2

)
χ3

i +
(
I
n− 7

2

k+ 1
2

− I
n− 9

2

k+ 1
2

− I
n− 3

2

k+ 1
2

+ I
n− 5

2

k+ 1
2

)
ξ3
i

+
(

3I
n− 7

2

k+ 1
2

− I
n− 9

2

k+ 1
2

+ I
n− 3

2

k+ 1
2

− 3I
n− 5

2

k+ 1
2

)
η3

i + e2piΔtΨn−2
i (24)
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After calculating the above mentioned convolution integral, we can reach the solutions of the

transmission line equations for I
n+ 1

2

k+ 1
2

and Vn+1
k . It is obvious to show that solutions for transient

current and voltage are given by

I
n+ 1

2

k+ 1
2

= Z−1
1

(
Z2I

n− 1
2

k+ 1
2

− (
Vn

k+1 − Vn+1
k

)
+ Z3I

n− 3
2

k+ 1
2

+ Z4I
n− 5

2

k+ 1
2

− ΔzΨn

)
(25)

where

Z1 = Δz

(
L + D

Δt
+

R
2

− Ω
2
− ξ + η

)

Z2 = Δz

(
L + D

Δt
− R

2
+

Ω
2
− χ − ξ + 3η

)
Z3 = Δz(χ − ξ − 3η)
Z4 = Δz(ξ + η)

χ =
M∑
i=1

γi

pi
χ1

i

ξ =
M∑
i=1

γi

pi
ξ1
i

η =
M∑
i=1

γi

pi
η1

i

Ψn =
M∑
i=1

γi

pi
Ψn

i

(26)

and

Vn+1
k = Vn

k − 1
ε0μ0

(
Δt

Δz

)
L

(
I
n+ 1

2

k+ 1
2

− I
n− 1

2

k+ 1
2

)
(27)

The FDTD scheme used to discretize the MTL equations cannot be adapted to the terminal
voltages, because the voltages and currents at each end have not been given by the solution listed
above, i.e., the solutions for V0 and VK remain to be defined. It is assumed that the sending end of
the line is connected with a voltage source whose voltage is Es, and internal resistance is R0. Similarly,
resistive load RL is assumed to be connected to the receiving end. According to the technique used
in [9], the terminal condition can be written as

Vn+1
1 = G−1

1

(
G2Vn

0 − 2
Δz

I
n+ 1

2
1
2

+
R−1

0 Es

Δz

)
and

Vn+1
K = Y−1

1

⎛
⎝Y2Vn

K + 2
I
n− 1

2
K

Δz

⎞
⎠

where

G1 =
C
Δt

+
R−1

0

Δz

G2 =
C
Δt

− R−1
0

Δz

Y1 =
C
Δt

+
R−1

L

Δz

Y2 =
C
Δt

− R−1
L

Δz
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4. RESULTS AND DISCUSSION

In this part, we will check the validity of the proposed method. As a first illustrative example, we
consider an overhead line consisting of three conductors of the same radius r = 2.5 mm placed above
two-layer soil as shown in Fig. 3. The upper layer height and its relative permittivity are set at d = 1 m
and εr1 = 10. The bottom layer permittivity εr2 is equal to 8. Conductors 1 and 3 are located at
the same height y1,3 = 10 m and are 5 m apart. Conductor 2 is placed at 2.5 m of conductor 1 to the
height y2 = 12 m. The loads are R0 = diag(100, 50)Ω, RL = diag(100, 100)Ω. Figs. 4(a), (b) illustrate
the effect of two-layer earth conductivity ratio on the impedance ZL11 = (Z − Ljω)11 by adopting the
Nakagawa and Sunde models. It is worth noting that the Nakagawa two-layer model is obtained from
Equation (8) by putting c1 = b1 + b2, c2 = (b1 − b2) exp(−2a1d1). The figure shows that Nakagawa
and Sunde models agree with a slight difference towards the high frequencies. In addition, when the
conductivity of the upper layer is greater than that of the lower layer (σ1

σ2
= 100), the penetration

depth of the return current is greater at low frequencies. Consequently, the lower the ratio of first

Figure 3. Three-conductor overhead line configuration.

(a) (b)

Figure 4. Effect of two-layer earth conductivity ratio on ZL11(jω) = (Z(jω) − Ljω)11 for Nakagawa
and Sunde models. (a) Im(ZL11(jω)). (b) Re(ZL11(jω)).
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(a) (b)

Figure 5. Effect of two-layer earth conductivity ratio on the conductor 1’s voltage for Nakagawa and
Sunde models. (a) For σ1 < σ2. (b) For σ1 > σ2.

to lower-layer conductivity is, the lower the conduction losses are (see the result for σ1
σ2

= 0.01). At
high frequencies, the penetration depth becomes smaller and smaller, and conduction losses increase for
σ1 < σ2. The difference between the two models influence on the voltage response as shown in Fig. 5 is
more noticeable for the case when σ1 > σ2 (see Figure 5(b)).

In the second example, we consider a three-conductor overhead line referred to as three-conductor
model (TCM). The conductors are located above a three-layer earth characterized by the conductivities
σ1 = 0.0001 S/m, σ2 = 0.001 S/m and σ3 = 0.01 S/m, the relative permittivities εr1 = 10, εr2 = 8 and
εr3 = 5, and the positions of the layer interfaces d1 = 1m, d2 = 3m. Details of geometric parameters
of the conductors are shown in Fig. 6(a). Fig. 6(b) shows the equivalent two-conductor line (ETCM)

(a) (b)

Figure 6. (a) Three-conductor transmission line configuration (TCM). (b) Equivalent two-conductor
transmission line (ETCM).



142 Lahmidi and Maaouni

(a) (b)

(c) (d)

Figure 7. Comparison between ZL for TCM and ETCM.

of the TCM obtained by replacing the two conductors at y1,3 = 10 m above the ground with a single
equivalent conductor 1′ of the radius req =

√
r|x1 − x3| = 0.112 m placed halfway between conductors

1 and 3.
Figure 7 shows the comparison between the TCM and ETCM models. Figs. 6(a) and 6(b) show the

frequency variation of the magnitude (in decibels) and phase of the impedance ZL11(jω) = ZL33(jω)
respectively for the three-conductor line as well as the deviation between the exact model and the result
obtained by the vector fitting |ZL11 − ZL11,V F | in decibels. Also, the variation as a function of the
frequency of the impedance ZLe11(jω) of the two-conductor line is shown in Figs. 6(a) and 6(b). The
same variations are reproduced in Figs. 6(c) and 6(d), but with respect to the impedances ZL22(jω) and
ZLe22(jω). From the examination of these curves, it emerges that the reduced two-conductor model is
able to efficiently model the three-conductor structure, particularly the impedance of conductor 2. For
conductor 1, a slight deviation is observed at low frequencies between the two models.

Now, in the three-conductor line configuration of Fig. 5(a), the sending end is connected to the
source whose voltage is Es = (ed(t), ed(t− t0), ed(t)), where ed(t) is assumed to be a double exponential
waveform given by

ed(t) = E0

(
e−αt − e−βt

)
with α = 4.01×106s−1, β = 4.76×108 s−1, and E0 = 1 V. Note that the excitation source of the second
conductor for the TCM model is shifted by t0 = 0.1µs. The internal resistance of the source and the
load are respectively set at R0 = diag(100, 50, 100)Ω and RL = diag(100, 100, 100)Ω, where diag stands
for the diagonal matrix. For the equivalent two-conductor line for Fig. 5(b), the internal voltage source
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(a) (b)

Figure 8. Voltages for TCM and ETCM. (a) Near end. (b) Far end.

is Ese = (ed(t), ed(t − t0)), and the loads are R0e = diag(100, 50)Ω, RLe = diag(100, 100)Ω. Fig. 8
shows the voltages at the near (z = 0m) and far (z = 10 m) ends for TCM and ETCM models. Here,
we find the same result concerning the reduced equivalent two-conductor line model of the TCM, i.e., it
allows to accurately reproduce the voltage on conductor 2 at both the near and far ends. Note that this
is valid when conductors 1 and 3 have identical characteristics and identical sources and loads. The use
of the ETCM is particularly interesting, it allows us to reduce the number of conductors by replacing
conductors 1 and 3 (TCM) that are located in the same height by an equivalent conductor without
influencing the voltage on conductor 2.

5. CONCLUSION

In this paper, the transient response of an overhead line in the presence of stratified earth has been
established. To achieve this, a new finite difference algorithm is developed, based on an improvement
in the calculation of the usual convolution integral between the time derivative of the current and
the ground return impedance. The Nakagawa model is adopted for this impedance, which is then
approximated by a sum of exponential functions obtained by the frequency-domain vector fitting
method. Finally, the equivalent model of replacing two identical parallel conductors, placed at the
same height above the ground, by a single conductor, remains a very effective way of reducing the
complexity of the wired structure while providing a very good estimate of the transient voltages.
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