Vol. 87
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-09
A Novel Nested Array Design for Direction of Arrival Estimation of Noncircular Signals
By
Progress In Electromagnetics Research M, Vol. 87, 83-92, 2019
Abstract
In this paper, a novel nested array is proposed for direction of arrival (DOA) estimation of noncircular signals. By using the noncircular property, the resulting virtual array is composed of difference coarray (DCA) and sum coarray (SCA). Specifically, we first give the properties of DCA and SCA for generalized translational nested array. Then, based on the relationship between DCA and SCA, an optimal translational nested array with increased degrees of freedom (DOFs) is constructed. To extend the physical array aperture, we move part of sensors in the translational nested array to the mirrored locations. Accordingly, the novel nested array with increased DOFs and physical array aperture is obtained. Finally, superiority of the proposed array is demonstrated by simulation experiments.
Citation
Weijian Si, Zhanli Peng, Changbo Hou, and Fuhong Zeng, "A Novel Nested Array Design for Direction of Arrival Estimation of Noncircular Signals," Progress In Electromagnetics Research M, Vol. 87, 83-92, 2019.
doi:10.2528/PIERM19100403
References

1. Pal, P. and P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., Vol. 58, No. 8, 4167-4181, Aug. 2010.
doi:10.1109/TSP.2010.2049264

2. Pal, P. and P. Vaidyanathan, "Nested arrays in two dimensions, Part I: Geometrical considerations," IEEE Trans. Signal Process., Vol. 60, No. 9, 4694-4705, Sep. 2012.
doi:10.1109/TSP.2012.2203814

3. Pal, P. and P. P. Vaidyanathan, "Coprime sampling and the MUSIC algorithm," Proc. 14th IEEE DSP/SPE Workshop, 289-294, Sedona, AZ, USA, Jan. 2011.

4. Zhou, C., Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, "Direction-of-arrival estimation for coprime array via virtual array interpolation," IEEE Trans. Signal Process., Vol. 66, No. 22, 5956-5971, Nov. 2018.
doi:10.1109/TSP.2018.2872012

5. Liu, S., Q. Liu, J. Zhao, and Z. Yuan, "Triple two-level nested array with improved degrees of freedom," Progress In Electromagnetics Research, Vol. 84, 135-151, 2019.
doi:10.2528/PIERB19031603

6. Moffet, A., "Minimum-redundancy linear arrays," IEEE Trans. Antennas Propag., Vol. 16, No. 2, 172-175, Mar. 1968.
doi:10.1109/TAP.1968.1139138

7. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Trans. Signal Process., Vol. 59, No. 2, 573-586, Feb. 2011.
doi:10.1109/TSP.2010.2089682

8. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-ofarrival estimation," IEEE Trans. Signal Process., Vol. 63, No. 6, 1377-1390, Mar. 2015.
doi:10.1109/TSP.2015.2393838

9. Shi, J., G. Hu, X. Zhang, and H. Zhou, "Generalized nested array: Optimization for degrees of freedom and mutual coupling," IEEE Commun. Lett., Vol. 22, No. 6, 1208-1211, Jun. 2018.
doi:10.1109/LCOMM.2018.2821672

10. Zheng, Z., W.-Q. Wang, Y. Kong, and Y. D. Zhang, "MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect," IEEE Trans. Signal Process., Vol. 67, No. 7, 1728-1741, Apr. 2019.
doi:10.1109/TSP.2019.2897954

11. Charge, P., Y. Wang, and J. Saillard, "A non-circular sources direction finding method using polynomial rooting," Signal Process., Vol. 81, No. 8, 1765-1770, Jul. 2001.
doi:10.1016/S0165-1684(01)00071-8

12. Zoubir, A., P. Charge, and Y. Wang, "Non circular sources localization with ESPRIT," Proc. European Conference on Wireless Technology (ECWT), Munich, Germany, Oct. 2003.

13. Abeida, H. and J.-P. Delmas, "MUSIC-like estimation of direction of arrival for noncircular sources," IEEE Trans. Signal Process., Vol. 54, No. 7, 2678-2690, Jun. 2006.
doi:10.1109/TSP.2006.873505

14. Zhai, H., X. Zhang, W. Zheng, and P. Gong, "“DOA estimation of noncircular signals for unfolded coprime linear array: Identifiability, DOF and algorithm (May 2018)," IEEE Access, Vol. 6, 29382-29390, May 2018.
doi:10.1109/ACCESS.2018.2835563

15. Iwazaki, S. and K. Ichige, "Underdetermined direction of arrival estimation by sum and difference composite co-array," 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 669-672, Bordeaux, France, Dec. 2018.

16. Cai, J., W. Liu, R. Zong, and B. Wu, "Sparse array extension for non-circular signals with subspace and compressive sensing based DOA estimation methods," Signal Process., Vol. 145, 59-67, Apr. 2018.
doi:10.1016/j.sigpro.2017.11.012

17. Chen, Z., Y. Ding, S. Ren, and Z. Chen, "A novel noncircular MUSIC algorithm based on the concept of the difference and sum coarray," Sensors, Vol. 18, No. 2, 344-360, 2018.
doi:10.3390/s18020344

18. Cai, J., B. Wu, P. Li, and W. Liu, "A sparse representation based DOA estimation algorithm for a mixture of circular and noncircular signals using sparse arrays," Proc. IEEE Int. Conf. Commun., 1-5, Paris, France, May 2017.

19. Gupta, P. and M. Agrawal, "Design and analysis of the sparse array for DOA estimation of noncircular signals," IEEE Trans. Signal Process., Vol. 67, No. 2, 460-473, Jan. 2018.
doi:10.1109/TSP.2018.2883035

20. Zhang, Y.-K., H.-Y. Xu, D.-M. Wang, B. Ba, and S.-Y. Li, "A novel designed sparse array for noncircular sources with high degree of freedom," Math. Problems Eng., Vol. 2019, Art. No. 1264715, 2019.

21. Si, W., Z. Peng, C. Hou, and F. Zeng, "Improved nested arrays with sum-difference coarray for DOA estimation," IEEE Sensors J., Vol. 19, No. 16, 6986-6997, Apr. 2019.
doi:10.1109/JSEN.2019.2912322