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A Novel Nested Array Design for Direction of Arrival Estimation
of Noncircular Signals

Weijian Si, Zhanli Peng, Changbo Hou*, and Fuhong Zeng

Abstract—In this paper, a novel nested array is proposed for direction of arrival (DOA) estimation of
noncircular signals. By using the noncircular property, we can get a virtual array composed of difference
coarray (DCA) and sum coarray (SCA). Specifically, we give the properties of DCA and SCA for the
generalized translational nested array first. Then, based on the relationship between DCA and SCA, an
optimal translational nested array with increased degrees of freedom (DOFs) is constructed. To extend
the physical array aperture, we move part of sensors in the translational nested array to the mirrored
locations. Accordingly, the novel nested array with increased DOFs and physical array aperture is
obtained. Finally, superiority of the proposed array is demonstrated by simulation experiments.

1. INTRODUCTION

Sparse arrays have attracted considerable attention from researchers in recent years due to their large
inter-element spacing and underdetermined direction of arrival (DOA) estimation ability [1–5]. Typical
sparse arrays, such as minimum redundancy arrays (MRAs) [6], nested arrays (NAs) [1], and coprime
arrays (CPAs) [7], can resolve O(N2) sources with O(N) physical sensors. Accordingly, many modified
versions [8–10] of the above sparse arrays have been presented, where their virtual arrays consist only
of difference coarray (DCA), i.e., only the property of circular signals is considered.

However, in practical applications, lots of noncircular signals also exist, e.g., binary phase shift
keying (BPSK), pulse amplitude modulation (PAM), and minimum shift keying (MSK), etc.. Research
results in [11] indicate that the ellipse covariance matrix of noncircular signals is not equal to zero,
which means that they can be exploited for DOA estimation combined with the covariance matrix.
Thus, based on this property, many DOA estimation methods for noncircular signals were proposed,
such as noncircular Root-MUSIC [11], noncircular ESPRIT [12], and MUSIC-Like method [13], etc.
However, the above methods can only be used in uniform linear arrays (ULAs) for DOA estimation,
which indicates that only 2(N − 1) noncircular signals can be detected with N physical sensors.

Recently, some DOA estimation methods about noncircular signals based on sparse arrays have
been proposed to improve the DOA estimation performance. In [14], the researchers presented an
ambiguity-free DOA estimation method for unfold CPA. By using the coprime property of unfold CPA,
the ambiguity problem is suppressed effectively. Nevertheless, only at most 2(M +N − 1) noncircular
signals can be detected when a unfold CPA with M + N − 1 physical sensors is used. Since the
noncircular signals possess non-zero ellipse covariance matrix, it can be vectorized to generate the
sum coarray (SCA) [15–17]. Therefore, based on this, some subspace-based [15, 17] and compressive
sensing-based [16, 18] underdetermined DOA estimation methods for noncircular signals have also been
proposed. Through the joint use of DCA and SCA, the number of continuous virtual sensors extended
by these sparse arrays can be increased dramatically, which can further contribute to the improvement
of DOA estimation performance. For convenience, we name the number of continuous virtual sensors as
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continuous degrees of freedom (cDOFs). Note that, the above DOA estimation methods are proposed
based on the prototype NA and CPA, whose physical structures are not optimal for the DOA estimation
of noncircular signals.

To achieve the underdetermined DOA estimation of noncircular signals with increased cDOFs, diff-
sum coprime array with multiperiod subarrays (DsCAMpS) is proposed in [17]. By complementing DCA
with SCA, the cDOFs of DsCAMpS is increased compared to that of traditional CPA. However, high
redundancy between DCA and SCA indicates that DsCAMpS is not optimal. Thus, some new sparse
array design strategies inspired by nested concept have been presented. In [15], a new nested array
(NNA) with sum and difference composite coarray (SDCA) is introduced, which owns larger cDOFs
than prototype NA. Unfortunately, we cannot get such NNA when the total sensor number is odd.
To overcome this drawback, a nested array with displaced subarray (NADiS) is designed in [19]. By
redefining the distance between dense subarray and sparse one, and expanding the inter-element spacing
of sparse subarray in the protype NA, NADiS owns significantly increased cDOFs and physical array
aperture. In [20], exhaustion method is utilized to determine the optimal sparse array configuration for
noncircular signals (SANC). Although SANC has achieved the maximum cDOFs, it does not possess
explicit closed-form expression. What is more, some holes exist in the SDCAs of the above sparse arrays,
which will restrict the DOA estimation performance for noncircular signals.

In this paper, we propose a novel nested array for DOA estimation of noncircular signals. This
novel configuration not only possesses the same advantage as prototype NA, i.e., continuous virtual
array, but also owns almost twice more cDOFs than the latter [1]. In addition, the physical aperture
of the proposed array is also increased, which can improve the DOA estimation performance further.
To obtain this novel nested array, we first give the generalized definition of translation nested array
(TNA) [21]. Its corresponding properties of DCA and SCA are also introduced. Then, based on the
relationship between DCA and SCA, we can determine the optimal translation distances for TNA to
maximize the obtaining cDOFs. By flipping part of sensors in the optimal TNA to the negative axis,
we can get the proposed array, which owns a much larger physical aperture than the optimal TNA.
In the end, the DOA estimation performance of the proposed array is evaluated through simulation
experiments.

The remainder of this paper is organized as follows. Section 2 reviews the system model for DOA
estimation of noncircular signals. Section 3 introduces the proposed novel nested array. Simulation
experiments are provided in Section 4. Section 5 concludes this paper.

2. SYSTEM MODEL

For an N -sensor TNA, the sensor position sets of its subarray 1 and subarray 2 can be respectively
denoted as {

P1 = {(p1 + a1)d|a1 ∈ Z, p1 = 1, . . . , N1}
P2 = {(p2(N1 + 1) + a2)d|a2 ∈ Z, p2 = 1, . . . , N2} (1)

where Z is the integer set. a1d and a2d represent the translation distances for subarray 1 and subarray
2, respectively. N1 and N2 are the corresponding sensor numbers, where N1 +N2 = N . Without loss of
generality, the unit inter-element spacing d is fixed as half a wavelength. Obviously, the prototype NA
is a special case of TNA with a1 = a2 = 0.

Assume K uncorrelated far-field narrowband noncircular signals impinge on the N -sensor TNA,
where the DOA of the kth signal is θk ∈ [−π/2, π/2). Then, the array output at the tth snapshot can
be expressed as

x(t) =
K∑
k=1

a(θk)sk(t) + n(t) (2)

where a(θk) = [ej2πl1 sin θk/λ, . . . , ej2πlN sin θk/λ]
T

denotes the steering vector of the kth signal, and
[�]T represents the transpose operation. [l1, . . . , lN ] is the sensor position set, which satisfies ln ∈
P1 ∪ P2, n = 1, . . . , N . sk(t) represents the kth noncircular signal at the tth snapshot, and n(t)
is the additive Gaussian white noise vector. It is obvious from the noncircularity of sk(t) that
E[sk(t)sk(t)] = ρke

jψkE[sk(t)s∗k(t)] holds, where ψk represents the noncircular phase of sk(t), and
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ρk ∈ (0, 1] denotes the corresponding noncircular rate. E[sk(t)s∗k(t)] = σ2
k is the kth signal power,

and E[�] is the expectation operation. Besides, the signal and noise are assumed to be statistically
independent.

Then, the covariance matrix of x(t) can be denoted as

Rx = E
[
x(t)xH(t)

]
= ARsAH + σ2

nI (3)

where A = [a(θ1), . . . ,a(θK)] is the manifold matrix. Rs = diag[σ2
1 , . . . , σ

2
K ] is the signal covariance

matrix. σ2
nI and I respectively denote the noise covariance matrix and the N -dimensional identity

matrix. The symbol (�)H denotes the conjugate transpose operation. For convenience of analysis,
noncircular phases and rates for all signals are assumed to be zero and one, respectively. Under this
condition, the ellipse covariance matrix of x(t) and its conjugate can be respectively given as

Γx = E
[
x(t)xT(t)

]
= ARsAT (4)

Γ∗
x = E

[
x∗(t)xH(t)

]
= A∗RsAH (5)

In practice, Rx, Γx, and Γ∗
x are estimated by the maximum likelihood method, where the array

output data with T snapshots is used. Combining Eqs. (3), (4), and (5), we can get the following
expression

R =

[ Rx

Γx
Γ∗
x

]
=

⎡
⎣ ARsAH

ARsAT

A∗RsAH

⎤
⎦ +

⎡
⎣ σ2

nI
0
0

⎤
⎦ (6)

where 0 denotes the N ×N zero matrix.
Vectorizing Eq. (6), we have

z = vec(R) = Bp + σ2
n1 (7)

where B = [(A∗ � A)T, (A � A)T, (A∗ �A∗)T]T and the symbol � denotes the Khatri-Rao product.
p = [σ2

1 , . . . , σ
2
K ]T, and 1 = [ĪT, 0̄T, 0̄T]T. Ī and 0̄ are the vectorization of I and 0, respectively. It is

clear that Eq. (7) can be regarded as a virtual array data model with only a single snapshot. Then, the
corresponding virtual sensor positions can be expressed as

V = D ∪ S ∪ −S (8)

where D = {li − lj |li, lj ∈ P1 ∪ P2} is the DCA. The union of S and −S is the SCA, where
S = {li + lj |li, lj ∈ P1 ∪ P2}. V denotes the SDCA.

After removing the repeated elements in V, we can get the consecutive part U. Then, cDOFs of V
is

cDOFs = |U| (9)

where U ⊆ V, and the symbol | � | refers to the cardinality of a set.
Then, the virtual array output corresponding to U can be formulated as

z0 = B0p + σ2
n10 (10)

Based on Eq. (10), spatial smoothing MUSIC (SS-MUSIC) [3] can be used to estimate the DOAs.
Note that the above description is a special case for DOA estimation of noncircular signals. When
the noncircular phases are not zero or the noncircular rates are less than one, the corresponding DOA
estimation methods based on sparse arrays can be found in [16, 17].

3. PROPOSED NOVEL NESTED ARRAY FOR NONCIRCULAR SIGNALS

In this section, we first introduce the design strategy for the proposed novel nested array. Then, its
properties about cDOFs and physical array aperture are analyzed. Note that, the parameter d is ignored
in the remainder of this paper to simplify the analysis.

According to Eq. (1), we can give the definition of generalized TNA as follows.
Definition 1 : Given the parameters N1 and N2, the generalized TNA is defined as{

P1 = {p1 + a1|a1 ∈ Q, p1 = 1, . . . , N1}
P2 = {p2(N1 + 1) + a2|a2 ∈ Q, p2 = 1, . . . , N2} (11)
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where Q is the rational number set.
From [21], we know that TNA has the potential to increase cDOFs when its sensors are laid out

properly. In addition, it can be seen from [2] that the offset configuration of two-dimensional NA can
generate more virtual sensors. Accordingly, we deduce that generalized TNA may have the similar
property. According to [21], we obtain the following property of generalized TNA.

Property 1 : For generalized TNA in Definition 1, its DCA has the same form as that of NA when
a1 = a2 ∈ Q or a1 = a2 + (N1 + 1)N2 ∈ Q.

The proof can be found in Appendix A. Obviously, the DCAs of generalized TNA and traditional
NA are identical as long as a1 and a2 have the relationship in Property 1. Under this case, the DCA of
generalized TNA can be expressed as

D = {−(N1 + 1)N2 + 1, . . . , (N1 + 1)N2 − 1} (12)

Besides, the continuous part of SCA for generalized TNA can be denoted as{
U1

SCA = U1 ∪ −U1, if a1 = a2 ∈ Q

U2
SCA = U2 ∪ −U2, if a1 = a2 + (N1 + 1)N2 ∈ Q

(13)

where U1 = {2 + 2a2, . . . ,M + 2a2}, U2 = {M + 2a2, . . . , 2M − 2 + 2a2}, and M = (N1 + 1)(N2 + 1). It
is clear from Eq. (13) that the SCA can be utilized to improve the underdetermined DOA estimation
performance of noncircular signals.

From Eq. (8), we know that SDCA is the union of DCA and SCA. Some repeated elements between
DCA and SCA always exist for the presented sparse arrays [15, 17, 19, 20], which will decrease the
available cDOFs. Fig. 1 provides an example of NADiS to illustrate this phenomenon, where the
number of physical sensors is fixed to be 5. The physical sensor positions are specified as {0, 1, 2, 7, 12}.
The DCA and SCA can be respectively denoted as D = {0,±1,±2,±5,±6,±7,±10,±11,±12} and
S = {0,±1,±2± 3,±4,±7,±8,±9,±12,±13,±14,±19,±24}. Obviously, we can find that the repeated
elements between D and S are {0,±1,±2,±7,±12}. In addition, it is obvious that the SDCA of NADiS
is discontinuous. From the above analysis, we know that the cDOFs may increase significantly after
the corresponding discontinuous parts of SDCA and the repeated elements between DCA and SCA are
eliminated.

-24 -19 -14 -10 -6 -2 2 6 10 14 19 24

Figure 1. The DCA and SCA of NADiS with 5 physical sensors, where red circles and blue rhombuses
denotes the elements in DCA and SCA, respectively.

Reviewing the offset configuration of two-dimensional NA [2], we can find that the cross-difference
result between the dense subarray and sparse subarray is essentially the cross-sum. Obviously, its virtual
array is the union of DCA and SCA in nature, i.e., SDCA. Compared with sensor configurations I and
II in [2], the offset configuration can not only generate the continuous SDCA, but also can achieve the
largest cDOFs. Inspired by this finding, we obtain the following property.

Property 2 : When a1 = a2 = −(N1 + 1)(2N2 + 1)/2, or a1 = (N1 + 1)(2N2 − 1)/2 and
a2 = −(N1 +1)/2, the generalized TNA can generate the continuous SDCA with the maximum cDOFs,
i.e., cDOFs = 2(N1 + 1)(2N2 + 1) − 3.

The proof of Property 2 is omitted here since it has a similar process to that described in Appendix
B of [21]. From Property 2, we know that there are two different cases for a1 and a2 to achieve the
same and maximum cDOFs. That is to say, there are no repeated elements between DCA and SCA.
For the first case, i.e., a1 = a2 = −(N1 + 1)(2N2 + 1)/2, the specific expressions of generalized TNA
can be denoted as {

PS1,1 = {p1 − (N1 + 1)(2N2 + 1)/2|p1 = 1, . . . , N1}
PS1,2 = {(p2 − (2N2 + 1)/2)(N1 + 1)|p2 = 1, . . . , N2} (14)

While for the second case, i.e., a1 = (N1 +1)(2N2 −1)/2 and a2 = −(N1 +1)/2, the specific expressions
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of generalized TNA can be modified as{
PS2,1 = {p1 −N1 − 1 + (N1 + 1)(2N2 + 1)/2|p1 = 1, . . . , N1}
PS2,2 = {(p2 −N2 − 1 + (2N2 + 1)/2)(N1 + 1)|p2 = 1, . . . , N2} (15)

Observing Eqs. (14) and (15), we can find that PS1,1 = −PS2,1 and PS1,2 = −PS2,2. Then, it is easy
to know that the generalized TNAs under this two cases are mirror symmetric about zero point. Based
on the above analysis, the proposed novel nested configuration can be defined as follows.

Definition 2 : Given parameters N1 and N2, the proposed novel nested array can be defined as{
P1 = f{p1 + (N1 + 1)(2N2 − 1)/2|p1 = 1, . . . , N1}
P2 = f{p2(N1 + 1) − (N1 + 1)/2|p2 = 1, . . . , N2} (16)

where the operation f{�} is defined as f{x1, x2, x3, x4, . . .} = {x1,−x2, x3,−x4, . . .}.
From Definition 2, we can easily determine the physical array aperture as

LPA = (N1 + 1)(2N2 + 1) − 3 (17)

To achieve the maximum cDOFs for the fixed physical sensor number, we need to solve the following
optimization equation:

max
N1,N2∈Z+

2(N1 + 1)(2N2 + 1) − 3

subject to: N1 +N2 = N
(18)

It is easy from Eq. (18) to know that the optimal solutions are{
N1 = (N − 1)/2, N2 = (N + 1)/2, N is odd
N1 = N2 = N/2, N is even

(19)

According to Eq. (19), we can obtain the corresponding expressions of cDOFs and physical array
aperture as

cDOFs = N2 + 3N − 1 (20)
LPA = (N2 + 3N − 4)/2 (21)

An example is shown in Fig. 2, where N = 8. From Eq. (19), we can determine that N1 = N2 = 4.
Then, the physical sensor position sets of the proposed array are P1 = {18.5,−19.5, 20.5,−21.5},
and P2 = {2.5,−7.5, 12.5,−17.5}. It can be seen from Fig. 2(a) that the physical array aperture of
proposed array is equal to 42. Fig. 2(b) gives the corresponding virtual array, which is continuous.
More importantly, the union of DCA and SCA does not have repeated elements, which can help to
increase the cDOFs. From Fig. 2(b), we know that the number of cDOFs is equal to 87. The above
results is in accordance with Eqs. (16), (19)–(21).

-21.5-19.5-17.5 -7.5 2.5 12.5 18.5 20.5

(a)

-43 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36 40 43

(b)

Figure 2. An example of the proposed novel nested array with 8 physical sensors. (a) Physical sensors
distribution of the proposed array, where P1 = {18.5,−19.5, 20.5,−21.5}, P2 = {2.5,−7.5, 12.5,−17.5}.
(b) The corresponding virtual array, which is the union of DCA and SCA. Black squares represent the
physical sensors.
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4. SIMULATION RESULTS

In this section, we select NNA [15], DsCAMpS [17], NADiS [19], and SANC [20] as the comparison
arrays. To demonstrate the superiority of the proposed array, cDOFs and physical array aperture of
the proposed array are first studied. Then, normalized spectrum of the proposed array is provided to
verify the DOA estimation validity. In the end, we give the root-mean-squared error (RMSE) results to
evaluate the DOA estimation performance of the proposed array for noncircular signals. It should be
noted that the unit inter-element spacing is set as half a wavelength in the following experiments.

4.1. cDOFs and Physical Array Aperture

In the first experiment, we study the cDOFs and physical array aperture of the proposed array. Let the
total physical sensor number N vary from 2 to 30. According to the definitions of NNA, DsCAMpS,
NADiS, and the proposed array, we can determine their specific sensor position sets respectively. Note
that SANC is obtained by exhaustion method. Hence, its configurations are provided under the condition
of 2 ≤ N ≤ 10.

Figure 3(a) shows the comparisons about cDOFs, while Fig. 3(b) depicts the curves about physical
array aperture. It can be seen from Fig. 3 that the proposed array possesses larger cDOFs and physical
array aperture than the other comparison arrays. Thus, the proposed array can identify more noncircular
signals and owns better estimation performance in comparison with NNA, DsCAMpS, NADiS, and
SANC.
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Figure 3. Comparisions of (a) cDOFs, (b) physical array aperture.

4.2. Normalized Spectrum

In the second experiment, N is fixed to be 8 to show the DOA estimation effectiveness of the proposed
array. According to Fig. 2(a), we know that the physical sensor positions of the proposed array are
{−21.5,−19.5,−17.5,−7.5, 2.5, 12.5, 18.5, 20.5}. Consider that K = 41 BPSK signals with uniform
distribution between −60◦ and 60◦ impinge on this array. Both SNR and snapshots are considered
ideal, i.e., the array output data is noiseless and possesses infinite number of snapshots. Then, SS-
MUSIC with 0.01◦ search interval is used to estimate the DOAs.

As shown in Fig. 4 is the normalized spectrum. Obviously, the DOAs of all BPSK signals are
estimated correctly, which verifies the validity of the proposed array.
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Figure 4. Normalized spectrum of the proposed array, where N = 8, and K = 41.

4.3. RMSE

To further evaluate the DOA estimation performance of the proposed array, RMSE experiments are
conducted in this subsection. Similar to the previous subsection, N is set to 8. Then, the sensor
positions of NNA, DsCAMpS, NADiS, and SANC can be respectively given as {0, 1, 2, 3, 11, 18, 25, 32},
{0, 2, 3, 4, 6, 8, 9, 10}, {0, 1, 2, 3, 4, 13, 22, 31}, and {0, 6, 12, 15, 16, 17, 19, 20}. The sensor positions of the
proposed array are the same as that in the previous subsection. Thus, the cDOFs of the above five
sparse arrays are 73, 41, 71, 81, and 87, respectively. In addition, the corresponding physical array
apertures can be respectively given as 32, 10, 31, 20, and 42. Assume that there are K = 15 BPSK
signals with uniform distribution between −60◦ and 60◦ impinging on the above arrays. The DOA
estimation method and search interval keep unchanged compared with the previous experiment. Then,
we can know that the number of identifiable noncircular signals for NNA, DsCAMpS, NADiS, SANC,
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Figure 5. RMSE results for five different sparse arrays, where N = 8, K = 15. (a) RMSE versus SNR,
where T = 500, (b) RMSE versus snaoshots, where SNR = 0dB.
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and the proposed array are 36, 20, 35, 40, and 43, respectively. The RMSE results are calculated
according to the following expression:

RMSE =

√√√√ 1
IK

I∑
i=1

K∑
k=1

(
θ̂k(i) − θk

)2
(22)

where I = 500 is the number of Monte Carlo trials, and θ̂k(i) is the estimated DOA of θk in the ith
trial.

Figure 5(a) shows the RMSE curves as a function of SNR, where the number of snapshots is fixed
as 500. Fig. 5(b) is the RMSE results versus snapshots under the condition of SNR = 0dB. It can
be observed from Fig. 5 that the RMSE curves of all sparse arrays decrease as the increase of SNR
and snapshots. Moreover, the proposed array always possesses less RMSE than the other four arrays,
especially in the case of high SNR and snapshots. The reason is that the cDOFs and physical array
aperture of the proposed array are larger than those of NNA, DsCAMpS, NADiS, and SANC. Thus, we
can conclude that our proposed array possesses the best DOA estimation performance among all the
five sparse arrays.

5. CONCLUSION

In this paper, we have proposed a novel nested array for DOA estimation of noncircular signals. Before
giving this novel sparse array, we first introduce the generalized TNA concept. Then, the relationship
between DCA and SCA is investigated. By using the properties of generalized TNA, we finally construct
the proposed array configuration. In addition, the optimal selections of N1 and N2 are also provided
so as to achieve the maximum cDOFs and the largest physical aperture. Finally, simulation results
demonstrate the superiority of the proposed array for the DOA estimation of noncircular signals.

APPENDIX A. PROOF OF PROPERTY 1

From [8, 21], we know that the DCA of a sparse array can be expressed as the union of its self-difference
and cross-difference. Thus, the DCA of the generalized TNA can be expressed as

D = (P1 − P1) ∪ (P2 − P2) ∪ (P1 − P2) ∪ (P2 − P1) (A1)

where P1 = {p1 + a1|a1 ∈ Q, p1 = 1, . . . , N1} and P2 = {p2(N1 + 1) + a2|a2 ∈ Q, p2 = 1, . . . , N2}. Then,
we have

P1 − P1 = {−N1 + 1,−N1 + 2, . . . , N1 − 2, N1 − 1} (A2)
P2 − P2 = {−(N2 − 1)(N1 + 1),−(N2 − 2)(N1 + 1), . . . , (N2 − 2)(N1 + 1), (N2 − 1)(N1 + 1)} (A3)
P2 − P1 = {p2(N1 + 1) − p1 + a2 − a1|a1, a2 ∈ Q, p1 = 1, . . . , N1, p2 = 1, . . . , N2} (A4)

In addition, it is obvious from Eq. (A1) that P1 − P2 and P2 −P1 are mirror symmetric about zero
point. Observing Eq. (11), we can find that the generalized TNA will become the traditional NA when
a1 = a2 = 0. Accordingly, the DCA of NA can be expressed as

DNA = (P1 − P1) ∪ (P2 − P2) ∪ (P1,0 − P2,0) ∪ (P2,0 − P1,0) (A5)

where P2,0 − P1,0 = −(P1,0 − P2,0) = {p2(N1 + 1) − p1|p1 = 1, . . . , N1, p2 = 1, . . . , N2}. For convenience
of analysis, let Up2 = {p2(N1 + 1) − p1|p1 = 1, . . . , N1}. It is apparent that Up2 is fully continuous and
possesses N1 elements. Then, the cross-difference existing in Eq. (A5) can be denoted as

(P1,0 − P2,0) ∪ (P2,0 − P1,0) = −UN2 ∪ −UN2−1 ∪ . . . ∪ UN2−1 ∪ UN2 (A6)

Combining Eqs. (A1) and (A5), we can deduce that when the DCA of generalized TNA has the
same form as that of NA, (P1 − P2) ∪ (P2 − P1) = (P1,0 − P2,0) ∪ (P2,0 − P1,0) should hold true. Next,
let Ũp2 = {p2(N1 + 1) − p1 + a2 − a1|a1, a2 ∈ Q, p1 = 1, . . . , N1} denote a continuous part of P2 − P1.
Then, the cross-difference in the DCA of generalized TNA can be expressed as

(P1 − P2) ∪ (P2 − P1) = −ŨN2 ∪ −ŨN2−1 ∪ . . . ∪ ŨN2−1 ∪ ŨN2 (A7)
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Obviously, there are two different cases for Ũp2, p2 = 1, . . . , N2 to make (P1 − P2) ∪ (P2 − P1) =
(P1,0 − P2,0) ∪ (P2,0 − P1,0) hold.

For the first case, i.e., Ũp2 ≥ 0, where p2 = 1, . . . , N2, it is obvious that Ũp2 = Up2 with
p2 = 1, . . . , N2 should hold true. Then, we can easily get that a2 − a1 = 0, which means a2 = a1 ∈ Q.

For the second case, i.e., Ũp2 < 0, where p2 = 1, . . . , N2, according to the definition of Up2, we
know that Up2 > 0 with p2 = 1, . . . , N2 always holds true. In this case, we can prove Ũp2 = −UN2+1−p2
for p2 = 1, . . . , N2 hold true. Then, we can easily get that a1 = a2 + (N1 + 1)N2 ∈ Q. The above is the
proof of Property 1.
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