Vol. 88
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-17
A Novel Center-Fed SIW Inclined Slot Antenna for Active Phased Array
By
Progress In Electromagnetics Research Letters, Vol. 88, 97-104, 2020
Abstract
In this paper, a center-fed substrate integrated waveguide (SIW) inclined slot array antenna is designed for a one-dimensional active phased array. A novel coaxial-to-SIW transition is employed to realize the central feed for enhancing bandwidth. The antenna prototype printed onto a single-layer Rogers 5870 is composed of 32×16 inclined slots working at Ku-band. As shown in measured result, the bandwidth with return loss < -10 dB is from 16.6 to 17.1 GHz, and the sidelobe levels of arrays are below -24.8 dB at 16.8 GHz in H planes. The measured gain is 31.8 dB at 16.8 GHz with the aperture efficiency of 65%. The active phased array is assembled by an antenna and 32 Tx/Rx modules, and the measured results show that the main lobe can obtain a wide-angle scanning from -45 to 45 degrees in E planes. The antenna array is suitable for low profile small active phased array radars and communication systems that require spatial wide-angle scanning.
Citation
Yao Zong, Jun Ding, Chen-Jiang Guo, and Chao Li, "A Novel Center-Fed SIW Inclined Slot Antenna for Active Phased Array," Progress In Electromagnetics Research Letters, Vol. 88, 97-104, 2020.
doi:10.2528/PIERL19090805
References

1. Prakash, S., S. Dash, and A. Patnaik, "Reconfigurable circular patch THz antenna using graphene stack based SIWtechnique," 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), Hyderabad, India, 2018.

2. Zhang, A. Q., Z. G. Liu, and W. B. Lu, "A tunable attenuator on graphene-based half-mode substrate integrated waveguide," 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 4, Auckland, New Zealand, 2018.

3. Giordano, M. C., S. Mastel, and C. Liewald, "Phase-resolved terahertz self-detection near-field microscopy," Opt. Express, Vol. 26, 18423, 2018.
doi:10.1364/OE.26.018423

4. Mitrofanov, O., L. Viti, and E. Dardanis, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Sci. Rep., Vol. 7, 44240, 2017.
doi:10.1038/srep44240

5. Viti, L., J. Hu, and D. Coquillat, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Sci. Rep., Vol. 6, 20474, 2016.
doi:10.1038/srep20474

6. Boukhvalov, D., B. G¨urbulak, and S. Duman, "The advent of indium selenide: Synthesis, electronic properties, ambient stability and applications," Nanomaterials, Vol. 7, 372, 2017.
doi:10.3390/nano7110372

7. Liu, C., L. Wang, and X. Chen, "Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene," Adv. Opt. Mater., Vol. 6, 1800836, 2018.
doi:10.1002/adom.201800836

8. Tang, W., A. Politano, and C. Guo, "Ultra sensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Adv. Funct. Mater., Vol. 28, 1801786, 2018.
doi:10.1002/adfm.201801786

9. Farrall, A. and P. Young, "Integrated waveguide slot antennas," IEEE Electron. Lett., Vol. 407, No. 16, 974-975, 2004.
doi:10.1049/el:20045505

10. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

11. Djerafi, T. and K. Wu, "Corrugated substrate integrated waveguide (SIW) antipodal linearly tapered slot antenna array fed by quasi-triangular power divider," Progress In Electromagnetics Research C, Vol. 26, 139-151, 2012.
doi:10.2528/PIERC11091912

12. Zou, X., C.-M. Tong, and D.-W. Yu, "Y-junction power divider based on substrate integrated waveguide," IEEE Electron. Lett., Vol. 47, No. 25, 1375-1376, 2011.
doi:10.1049/el.2011.2953

13. Taringou, F., J. Bornemann, and K. Wu, "Broadband coplanar waveguide and microstrip low-noise amplifier integrations for K-band SIW applications on low-permittivity substrate," IEEE Trans. Antennas Propag., Vol. 8, 99-103, 2014.

14. Khan, A. A. and M. K. Mandal, "A compact broadband direct coaxial line to SIW transition," IEEE Microwave Wireless Compon. Lett., Vol. 26, 894-896, 2016.
doi:10.1109/LMWC.2016.2615817

15. Park, S.-J., D.-H. Shin, and S.-O. Park, "Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device," IEEE Antennas Wirel. Propag. Lett., Vol. 64, 923-931, 2016.
doi:10.1109/TAP.2015.2513075

16. Xia, L., R. Xu, and B. Yan, "Broadband transition between air-filled waveguide and substrate integrated waveguide," Electron. Lett., Vol. 42, 1403-1405, 2006.
doi:10.1049/el:20062228

17. Yang, D., F. F. Gao, and J. Pan, "A single-layer dual-frequency shared-aperture SIW slot antenna array with a small frequency ratio," IEEE Antennas Wirel. Propag. Lett., Vol. 17, 1049-1051, 2018.

18. Li, Y., W. Hong, G. Hua, J.-X Chen, and K. Wu, "Simulation and experiment on SIW slot array antennas," IEEE Microwave Wireless Compon. Lett., Vol. 14, 446-448, 2004.

19. Liu, B., et al. "Substrate integrated waveguide (SIW) monopulse slot antenna array," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 275-279, 2009.
doi:10.1109/TAP.2008.2009743

20. Kim, D.-Y. and S. Nam, "Excitation control method for a low sidelobe SIW series slot array antenna with 45 linear polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5807-5812, 2013.
doi:10.1109/TAP.2013.2277711

21. Ando, M., Y. Tsunemitsu, and M. Zhang, "Reduction of long line effects in single-layer slotted waveguide arrays with an embedded partially corporate feed," IEEE Antennas Wirel. Propag. Lett., Vol. 58, 2275-2280, 2010.
doi:10.1109/TAP.2010.2044346

22. Li, T. and W.-B. Dou, "Millimetre-wave slotted array antenna based on double-layer substrate integrated," IEEE Trans. Antennas Propag., Vol. 9, 882-888, 2015.

23. Xu, J.-F., Z.-N. Chen, and X.-M. Qing, "CPW center-fed single-layer SIW slot antenna array for automotive radars," IEEE Antennas Wirel. Propag. Lett., Vol. 62, 4528-4535, 2014.
doi:10.1109/TAP.2014.2330587

24. Chen, M. and W.-Q. Che, "Bandwidth enhancement of substrate integrated waveguide (SIW) slot antenna with center-fed techniques," IEEE Antennas Technology (iWAT), 349-351, 2011.

25. Wen, Y.-Q. and B.-Z. Wang, "Wide-beam SIW-slot antenna for wide-angle scanning phased array," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1638-1641, 2016.
doi:10.1109/LAWP.2016.2519938