Vol. 166
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-10-23
A Dual-Mesh Microwave Reconstruction Method Based on Compressive Sampling Matching Pursuit Algorithm
By
Progress In Electromagnetics Research, Vol. 166, 43-57, 2019
Abstract
In this paper, the Compressive Sampling Matching Pursuit Algorithm (CoSaMP) is applied to microwave reconstruction of a 2-dimensional non-sparse object. First, an adaptive discretization method, DistMesh method, is applied to discretize the image domain based on the region of interest. The dual-mesh method is able to provide denser and smaller discretized cells in more important areas of the object and larger cells in other areas, thereby providing more details in the interest domain and keeping the computational burden at a reasonable level. Another benefit of using the dual-mesh method is that it automatically generates size functions and adapts to the curvature and the feature size of the geometry. In addition, the size of each cell changes gradually. Next, the inverse scattering problem is solved in frame of Distorted Born Iterative Method (DBIM). During each iteration of DBIM, the near field scattering problem is modeled as a set of linear equations. Furthermore, a compressive sensing (CS) method called the Compressive Sampling Matching Pursuit Algorithm is applied to solve the nonlinear inverse problem. During this process, two innovative steps are applied. First, for the reconstruction of the non-sparse object, the signal input to our algorithm is processed via a wavelet transformation to obtain sparsity. Second, as the dual-mesh method discretizes more important cells in smaller sizes, these cells have high potential to be filtered by the threshold of CoSaMP. As a result, a regularization matrix is introduced to reduce the effect of size. Finally, we present numerical experiment results based on our dual-mesh method combined with the regularized CoSaMP algorithm.
Citation
Huiyuan Zhou, and Ram M. Narayanan, "A Dual-Mesh Microwave Reconstruction Method Based on Compressive Sampling Matching Pursuit Algorithm," Progress In Electromagnetics Research, Vol. 166, 43-57, 2019.
doi:10.2528/PIER19090203
References

1. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137

2. Zhou, H., R. Narayanan, I. Balasingham, and R. Chandra, "Radar for disease detection and monitoring," Radar for Indoor Monitoring: Monitoring: Detection, Localization and Assessment, edited by M. G. Amin, 301–335, CRC Press, Boca Raton, FL, 2017.

3. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "Medical microwave imaging and analysis," Medical Image Analysis and Informatics: Computer-Aided Diagnosis and Therapy, P. M. de Azevedo-Marques, A. Mencattini, M. Salmeri, and R. M. Rangayyan (eds.), 451–466, CRC Press, Boca Raton, FL, 2018.

4. Colton, D. L. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer- Verlag, Berlin, 1992.
doi:10.1007/978-3-662-02835-3

5. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338

6. Hohage, T., "Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem," Inverse Problems, Vol. 13, No. 5, 1279-1299, Jan. 1997.
doi:10.1088/0266-5611/13/5/012

7. Zhou, H., R. M. Narayanan, R. Chandra, and I. Balasingham, "Microwave imaging of circular phantom using the Levenberg-Marquardt method," Proc. SPIE Conf. Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, Apr. 2015, doi: 10.1117/12.2176754.

8. Van Den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103

9. Li, L., H. Zheng, and F. Li, "Two-dimensional contrast source inversion method with phaseless data: TM case," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 6, 1719-1736, 2009.
doi:10.1109/TGRS.2008.2006360

10. Hajihashemi, M. R. and M. El-Shenawee, "Shape reconstruction using the level set method for microwave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 92-96, 2008.
doi:10.1109/LAWP.2008.920464

11. Irishina, N., D. Alvarez, O. Dorn, and M. Moscoso, "Structural level set inversion for microwave breast screening," Inverse Problems, Vol. 26, No. 3, 035015, 2010.
doi:10.1088/0266-5611/26/3/035015

12. Candes, E. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

13. Pati, Y. C., R. Ramin, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," Proc. 27th Asilomar Conference on Signals, Systems and Computers, 40-44, Pacific Grove, CA, Nov. 1993.

14. Davis, G., S. Mallat, and M. Avellaneda, "Adaptive greedy approximations," Constructive Approximation, Vol. 13, No. 1, 57-98, 1997.
doi:10.1007/BF02678430

15. Azghani, M., P. Kosmas, and F. Marvasti, "Microwave medical imaging based on sparsity and an iterative method with adaptive thresholding," IEEE Transactions on Medical Imaging, Vol. 34, No. 2, 357-365, 2014.
doi:10.1109/TMI.2014.2352113

16. Zhou, H. and R. M. Narayanan, "Microwave imaging of nonsparse object using dual-mesh method and iterative method with adaptive thresholding," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 504-512, 2019.
doi:10.1109/TAP.2018.2876164

17. Blumensath, T. and M. E. Davies, "Iterative thresholding for sparse approximations," Journal of Fourier Analysis and Applications, Vol. 14, No. 5–6, 629-654, 2008.
doi:10.1007/s00041-008-9035-z

18. Blumensath, T. and M. E. Davies, "Iterative hard thresholding for compressed sensing," Applied and Computational Harmonic Analysis, Vol. 27, No. 3, 265-274, 2009.
doi:10.1016/j.acha.2009.04.002

19. Needell, D. and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Applied and Computational Harmonic Analysis, Vol. 26, No. 3, 301-321, 2009.
doi:10.1016/j.acha.2008.07.002

20. Persson, P.-O., "Mesh size functions for implicit geometries and PDE-based gradient limiting," Engineering with Computers, Vol. 22, No. 2, 95-109, 2006.
doi:10.1007/s00366-006-0014-1

21. Zhou, H., R. M. Narayanan, and I. Balasingham, "Microwave reconstruction method using a circular antenna array cooperating with an internal transmitter," Proc. SPIE Conf. Radar Sensor Technology XX, Baltimore, MD, Apr. 2016, doi: 10.1117/12.2228287.

22. Paulsen, K., P. Meaney, M. Moskowitz, and J. Sullivan, "A dual-mesh scheme for finite element based reconstruction algorithms," IEEE Transactions on Medical Imaging, Vol. 14, No. 3, 504-514, 1995.
doi:10.1109/42.414616

23. Brassarote, G. O. N., E. M. Souza, and J. F. G. Monico, "Non-decimated wavelet transform for a shift-invariant analysis," Tendencias em Matematica Aplicada e Computacional, Vol. 19, No. 1, 93-110, 2018.
doi:10.5540/tema.2018.019.01.93

24. Loboda, N. S., A. V. Glushkov, V. N. Khokhlov, and L. Lovett, "Using non-decimated wavelet decomposition to analyse time variations of North Atlantic oscillation, eddy kinetic energy, and Ukrainian precipitation," Journal of Hydrology, Vol. 322, No. 1–4, 14-24, 2006.
doi:10.1016/j.jhydrol.2005.02.029

25. Balanis, C. A., Advanced Engineering Electromagnetics, J. Wiley & Sons, Hoboken, NJ, 2012.

26. Chandra, R., A. J. Johansson, M. Gustafsson, and F. Tufvesson, "A microwave imaging-based technique to localize an in-body RF source for biomedical applications," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 5, 1231-1241, 2015.
doi:10.1109/TBME.2014.2367117

27. Chew, W. and Y. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

28. Davenport, M. A., D. Needell, and M. B. Wakin, "Signal space CoSaMP for sparse recovery with redundant dictionaries," IEEE Transactions on Information Theory, Vol. 59, No. 10, 6820-6829, 2013.
doi:10.1109/TIT.2013.2273491

29. Sandhu, A. I. and H. Bagci, "A modified CoSaMP algorithm for electromagnetic imaging of two dimensional domains," Proc. 2017 International Applied Computational Electromagnetics Society Symposium-Italy (ACES), Florence, Italy, Mar. 2017, doi: 10.23919/ROPACES.2017.7916412.

30. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, No. 6, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09