Vol. 85
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-10-03
A Novel Gain-Enhanced Antenna with Metamaterial Planar Lens for Long-Range UHF RFID Applications
By
Progress In Electromagnetics Research B, Vol. 85, 143-161, 2019
Abstract
A novel gain-enhanced microstrip antenna (MSA) with metamaterial planar lens for long-range radio frequency identification (RFID) applications for the 902-928 MHz UHF frequency band is proposed in this paper. The antenna is a combination of a new general-purpose circularly polarized MSA and a novel effective negative refractive index metamaterial (NIM) slab of 25 unit cells, arranged in a 5 x 5 layout, working as a planar lens for gain enhancement. The general-purpose MSA has an impedance frequency band of 828-1015 MHz, a maximum gain of 8.43 dBi at 915 MHz, an axial ratio frequency band of 896-931 MHz and excellent performance for short and medium range RFID applications. The new infinite periodicity NIM slab has a negative refractive band of 886-1326 MHz, a negative electric permittivity band of 888-3406 MHz, and a negative magnetic permeability of band 885-1065 MHz. Together, the general-purpose MSA and the NIM planar lens results in the low-cost gain-enhanced antenna for long-range RFID applications, with an 843-993 MHz impedance frequency band and a maximum broadside gain enhancement of 48.27%, resulting in a 12.5 dBi gain at 902 MHz. Finally, the parametric studies conducted during the design process of the gain-enhanced antenna with metamaterial planar lens are presented.
Citation
Edmilson Carneiro Moreira, Rodrigo O. Martins, Bruno M. S. Ribeiro, and Antônio Sergio Bezer Sombra, "A Novel Gain-Enhanced Antenna with Metamaterial Planar Lens for Long-Range UHF RFID Applications," Progress In Electromagnetics Research B, Vol. 85, 143-161, 2019.
doi:10.2528/PIERB19081501
References

1. Das, R., RFID Forecasts, Players and Opportunities 2017–2027, IDTechEx, 2017, available: https://www.idtechex.com/research/reports/rfid-forecasts-players-and-opportunities-2017-2027-000546.asp.

2. Brown, D., RFID Implementation, McGraw-Hill, 2007.

3. Sanghera, P., RFID + Study Guide and Practice Exam, Syngress Publishing, Inc., 2007, ISBN 978-0-470-10764-5.

4. Dias, E. M., J. A. Tatto, and D. A. Swiatek, "The National Vehicle Identification System in Brazil as a tool for mobility improvement," Proceedings of the 19th International Conference on Communications, 247-251, Zakynthos Island, Greece, 2015.

5. Chang, Y. and T. K. Shih, "RFID-based intelligent parking management system with indoor positioning and dynamic tracking," 10th International Conference on Ubi-media Computing and Workshops, Pattaya, Thailand, 2017.

6. Moreira, E. C., R. Freitas, A. Morais, and A. S. B. Sombra, "RFID in cashew nut industry," 2014 IEEE Brasil RFID, 31-34, Sao Paulo, Brazil, 2014.

7. Bertolini, M., E. Bottani, G. Ferretti, A. Rizzi, and A. Volpi, "Experimental evaluation of business impacts of RFID in apparel and retail supply chain," International Journal of RF Technologies, Vol. 3, No. 4, 257-282, 2012.
doi:10.3233/RFT-2012-028

8. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Jonh Wiley & Sons Inc., 2005.

9. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House Inc., 2001.

10. Chen, Z. N., X. Qing, and H. L. Chung, "A universal UHF RFID reader antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1275-1282, May 2009.
doi:10.1109/TMTT.2009.2017290

11. Chung, H. L., X. Qing, and Z. N. Chen, "A broadband circularly polarized stacked probe-fed patch antenna for UHF RFID applications," International Journal of Antennas and Propagation, Vol. 2007, Article ID 76793, 8 pages, 2007.

12. Dobkin, D., RF in the RFID, 1st Ed., Elsiveir Inc., 2008.

13. Hu, W., G. Wen, D. Inserra, Y. Huang, J. Li, and Z. D. Chen, "A circularly polarized antenna array with gain enhancement for long-range UHF RFID systems," Electronics, Vol. 8, No. 4, Article ID 400, 2019.

14. Ozis, E., A. V. Osipov, and T. F. Eibert, "Metamaterials for microwave radomes and the concept of a metaradome: Review of the literature," International Journal of Antennas and Propagation, Vol. 2017, 13 pages, 2017.

15. Sahu, B., P. Tripathi, and S. P. Singh, "Investigation on cylindrical dielectric resonator antenna with metamaterial superstrate," Wireless Personal Communications, Vol. 84, No. 2, 1151-1163, 2015.
doi:10.1007/s11277-015-2681-y

16. Capolino, F., Theory and Phenomena of Metamaterials, CRC Press, 2009.

17. Veselago, V., L. Braginsky, V. Shklover, and C. Hafner, "Negative refractive index materials," Journal of Computational and Theoretical Nanoscience, Vol. 3, No. 2, 1-30, 2006.
doi:10.1166/jctn.2006.3000

18. Arora, C., S. S. Pattnaik, and R. N. Baral, "SRR superstrate for gain and bandwidth enhancement of microstrip patch antenna array," Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017.
doi:10.2528/PIERB17041405

19. Abdel-Rahman, A. B. and A. A. Ibrahim, "Metamaterial enhances microstrip antenna gain," Microwave & RF, 46-50, August 2015.

20. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface," Progress In Electromagnetics Research B, Vol. 22, 23-37, 2010.
doi:10.2528/PIERB10031901

21. Abdelrehim, A. A. A. and H. Ghafouri-Shiraz, "Performance improvement of patch antenna using circular split ring resonators and thin wires employing metamaterials lens," Progress In Electromagnetics Research B, Vol. 69, 137-155, 2016.
doi:10.2528/PIERB16051103

22. Moretti, E. A., R. Anholon, I. S. Rampasso, D. Silva, L. A. Santa-Eulalia, and P. S. A. Ignacio, "Main difficulties during RFID implementation: An exploratory factor analysis approach," Technology Analysis & Strategic Management, Vol. 31, No. 8, 943-956, 2019.
doi:10.1080/09537325.2019.1575351

23. Moreira, E. C., A. S. B. Sombra, and G. C. Barroso, "An UHF RFID reader antenna made of recycled and reutilized materials from construction debris," IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, Sydney, NSW, 2012.

24. Chung, K. L. and A. Sanagavaparu, "A systematic design method to obtain broadband characteristics for singly-fed electromagnetically coupled patch antennas for circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 12, 3239-3248, 2003.
doi:10.1109/TAP.2003.820949

25. Costa, F., A. Monorchio, and G. Manara, "An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces," ACES Journal, Vol. 29, No. 12, 960-976, 2014.

26. Gao, X., X. Yu, W. Cao, Y. Jiang, and X. Yu, "Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces," Chinese Physics B, Vol. 25, No. 12, 128102, 2016.
doi:10.1088/1674-1056/25/12/128102

27. Katiyar, P. R. and W. N. L. B. W. Mahadi, "Comparative analysis of different single cell metamaterial," Australian Journal of Basic and Applied Sciences, Vol. 8, No. 21, 1-7, 2014.

28. Vallecchi, A., F. Capolino, and A. G. Schuchinsky, "2-D isotropic effective negative refractive index metamaterial in planar technology," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 269-271, May 2009.
doi:10.1109/LMWC.2009.2017585

29. Majumdar, P., Z. Zhao, C. Ji, and R. Liu, "Parametric analysis and modeling of jerusalem cross frequency selective surface," International Journal of Electromagnetics and Applications, Vol. 6, No. 1, 13-21, 2016.

30. Quan, X., S. Zhang, and H. Li, "Metamaterials forge high-directivity antenna," Microwave & RF, Vol. 54, No. 6, 50-56, June 2015.

31. Wang, H., X. Chen, and K. Huang, "An improved approach to determine the branch index for retrieving the constitutive effective parameters of metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 85-96, 2011.
doi:10.1163/156939311793898341

32. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, 2013.
doi:10.1109/MAP.2013.6735515

33. Payandehjoo, K. and R. Patton, "De-embeding the effect of a printed array of probes on planar very-near-field measurements," 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-4, Antibes Juan-les-Pins, 2014.

34. Patton, R., "A very-near-field measurement technique to test large antennas in the lab," Microwave Journal, Vol. 57, No. 1, 116-120, January 2014.

35. Silva, S. B. and A. R. Correia, "Minimum activation power of a passive UHF RFID tags: A low cost method," Journal of Aerospace Technology and Management, Vol. 10, Article ID e2418, 2018.