Vol. 88
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-15
Transverse Resolution in Microwave Imaging for Strip Objects Buried in a Half-Space Medium
By
Progress In Electromagnetics Research M, Vol. 88, 145-157, 2020
Abstract
In this paper we are concerned with a microwave imaging problem for a non-magnetic two-layered background medium, where objects are buried in the lower half-space, and the scattered field is collected in the upper one according to a multi-monostatic configuration. In particular, we are interested in estimating the achievable transverse resolution. As well known, range resolution mainly depends on the working frequency band whereas transverse resolution depends on the geometrical parameters of the configuration and is usually computed in correspondence to the highest (or even the average) adopted frequency. Determining transverse resolution is much more difficult, and closed form estimations have been actually found only for the case of unbounded observation domain. However, in real scattering scenarios measurements have to be necessarily collected under an aspect limited setup. Therefore, in order to fill such a theoretical gap, here the focus is on the estimation of transverse resolution for bounded observation domains. To this end, we consider a single-frequency 2D scalar prototype configuration where the buried scattering object domain is represented by a strip parallel to the half-space interface. More in detail, we succeed in finding an analytical estimation of the transverse resolution which highlights the role of the configuration parameters as well as the dielectric permittivity of the lower half-space.
Citation
Maria Antonia Maisto, Raffaele Solimene, and Rocco Pierri, "Transverse Resolution in Microwave Imaging for Strip Objects Buried in a Half-Space Medium," Progress In Electromagnetics Research M, Vol. 88, 145-157, 2020.
doi:10.2528/PIERM19080301
References

1. Daniels, D. J., Ground Penetrating Radar, Wiley Online Library, 2005.

2. Pastorino, M., "Stochastic optimization methods applied to microwave imaging: A review," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 538-548, Mar. 2007.
doi:10.1109/TAP.2007.891568

3. Chen, X., K.-M. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

4. Hajebi, M., A. Tavakoli, and A. Hoorfar, "Frequency domain inverse profiling of buried dielectric elliptical-cylindrical objects using evolutionary programming," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 4, 503-507, Apr. 2018.
doi:10.1109/LGRS.2017.2788699

5. Sallucci, M., L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sensing, Vol. 55, No. 3, 1305-1317, 2017.
doi:10.1109/TGRS.2016.2622061

6. Kamilov, U. S., D. Liu, H. Mansour, and P. T. Boufounos, "A recursive born approach to nonlinear inverse scattering," IEEE Signal Process. Lett., Vol. 23, No. 8, 1052-1056, 2016.
doi:10.1109/LSP.2016.2579647

7. Yu, Y., T. Yu, and L. Carin, "Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 5, 957-973, 2004.
doi:10.1109/TGRS.2003.820601

8. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 7, 1596-1607, 2001.
doi:10.1109/36.934091

9. Dong, Q. and C. M. Rappaport, "Microwave subsurface imaging using direct finite-difference frequency-domain-based inversion," IEEE Trans. Geosci. Remote Sensing, Vol. 47, No. 11, 3664-3670, 2009.
doi:10.1109/TGRS.2009.2028740

10. Cui, T. J. and W. C. Chew, "Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy earth," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 4, 2033-2041, 2000.
doi:10.1109/36.851784

11. Sun, Y., L. Qu, S. Zhang, and Y. Yin, "MT-BCS-based two-dimensional diffraction tomographic GPR imaging algorithm with multivie multistatic configuration," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 6, 831-835, 2016.
doi:10.1109/LGRS.2016.2549538

12. Qu, L., Y. Yin, Y. Sun, and L. Zhang, "Diffraction tomographic ground-penetrating radar multibistatic imaging algorithm with compressive frequency measurements," IEEE Geosci. Remote Sens. Lett., Vol. 12, No. 10, 2011-2015, 2015.
doi:10.1109/LGRS.2015.2441991

13. Hansen, T. B. and P. M. Johansen, "Inversion scheme for ground penetrating radar that takes into account the planar air soil interface," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 1, 496-506, 2000.
doi:10.1109/36.823944

14. Leone, G. and F. Soldovieri, "Analysis of the distorted born approximation for subsurface reconstruction: Truncation and uncertainties effects," IEEE Trans. Geosci. Remote Sensing, Vol. 41, No. 1, 66-74, 2003.
doi:10.1109/TGRS.2002.806999

15. Fortuny-Guasch, J., "A novel 3-D subsurface radar imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 2, 443-452, 2002.
doi:10.1109/36.992808

16. Bertero, M., "Linear inverse and ill-posed problems," Adv. Electron. Electron Phys., Vol. 75, 1-120, 1989.

17. Soumekh, M., "A system model and inversion for synthetic aperture radar imaging," IEEE Transactions on Image Processing, Vol. 1, No. 1, 64-76, 1992.
doi:10.1109/83.128031

18. Lopez-Sanchez, J. M. and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 728-737, 2000.
doi:10.1109/8.855491

19. Cui, T. J., W. C. Chew, X. X. Yin, and W. Hong, "Study of resolution and super resolution in electromagnetic imaging for half-space problems," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1398-1411, 2004.
doi:10.1109/TAP.2004.829847

20. Maisto, M. A., R. Solimene, and R. Pierri, "Resolution limits in inverse source problem beyond the Fresnel zone," J. Opt. Soc. Am. A, Vol. 36, No. 5, 826-833, 2019.
doi:10.1364/JOSAA.36.000826

21. Maisto, M. A., R. Solimene, and R. Pierri, "Depth resolution in strip current reconstructions in near non-reactive zone," J. Opt. Soc. Am. A, Vol. 36, No. 6, 975-982, 2019.
doi:10.1364/JOSAA.36.000975

22. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse source in near field: The case of strip current," J. Opt. Soc. Am. A, Vol. 35, 755-763, 2018.
doi:10.1364/JOSAA.35.000755

23. Tikhonov, A. N. and V. I. Arsenine, Solution to Ill-posed Problems, Halstead, 1977.

24. Cheney, M. and R. J. Bonneau, "Imaging that exploits multipath scattering from point scatterers," Inverse Problems, Vol. 20, 1691-1711, 2004.
doi:10.1088/0266-5611/20/5/023

25. Maisto, M. A., R. Solimene, and R. Pierri, "Sampling approach for singular system computation of a radiation operator," J. Opt. Soc. Am. A, Vol. 36, 353-361, 2019.
doi:10.1364/JOSAA.36.000975

26. Gabor, D., "Light and information," Progress in Optics, E. Wolf, ed., Vol. 1, 109–153, North-Holland, Amsterdam, The Netherlands, 1961.