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Transverse Resolution in Microwave Imaging for Strip Objects

Buried in a Half-Space Medium

Maria A. Maisto*, Raffaele Solimene, and Rocco Pierri

Abstract—In this paper we are concerned with a microwave imaging problem for a non-magnetic
two-layered background medium, where objects are buried in the lower half-space, and the scattered
field is collected in the upper one according to a multi-monostatic configuration. In particular, we are
interested in estimating the achievable transverse resolution. As well known, range resolution mainly
depends on the working frequency band whereas transverse resolution depends on the geometrical
parameters of the configuration and is usually computed in correspondence to the highest (or even the
average) adopted frequency. Determining transverse resolution is much more difficult, and closed form
estimations have been actually found only for the case of unbounded observation domain. However, in
real scattering scenarios, measurements have to be necessarily collected under an aspect limited setup.
Therefore, in order to fill such a theoretical gap, here the focus is on the estimation of transverse
resolution for bounded observation domains. To this end, we consider a single-frequency 2D scalar
prototype configuration where the buried scattering object domain is represented by a strip parallel to
the half-space interface. More in detail, we succeed in finding an analytical estimation of the transverse
resolution which highlights the role of the configuration parameters as well as the dielectric permittivity
of the lower half-space.

1. INTRODUCTION

Subsurface imaging entails dealing with an inverse scattering problem in which the targets are embedded
within an inhomogeneous background medium. As such, it is relevant in a number of applicative contexts
that range from non-destructive testing to geophysical prospecting, from buried-object detection to mine
detection [1], etc.

As is well known, electromagnetic inverse scattering problems require the inversion of a nonlinear
and ill-posed mathematical relationship. A number of nonlinear approaches that basically achieve
inversion through optimisation procedures, both deterministic and stochastic [2–7], have been developed.
However, these methods are in general computationally demanding and can suffer from the local minima
problem [8].

If quantitative reconstructions are not required, the problem can be drastically simplified by
linearising the scattering equations, for example using the Born approximation [9–15]. However,
ill-posedness still requires adopting some regularisation procedure [16], which limits the achievable
resolution. In this framework, determining the achievable resolution and how it depends on the
configuration is of great importance since, having set the configuration, this allows to foresee the
achievable performance during the imaging stage, or viceversa, and given the degree of accuracy to
obtain in the reconstruction the configuration can be settled accordingly.

As is well known, range resolution mainly depends on the adopted frequency band [17, 18]. Instead,
transverse resolution, usually estimated in correspondence to the highest (or even the average) adopted
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frequency, is much more difficult to determine (especially for near-field cases) since it depends on
the geometrical parameters of the configuration and of course on the half-space medium dielectric
permittivity. Literature on subsurface imaging, though extensive, is mainly devoted to discussing
imaging algorithms. Indeed, transverse resolution is usually estimated by employing Fourier based
arguments which ignore truncation effects (i.e., the measurement aperture is considered unbounded) [19].
As a result, for the aspect limited configuration, the estimated transverse resolution is incorrect and
fails to capture the spatially varying behaviour that characterises the resolution for the near-zone
configuration [14]. The estimation of the resolution for near-field configuration is also addressed
in [17, 18, 20, 21]. However, those papers consider a homogeneous background medium. Moreover,
in [17, 18] the resolution is estimated by basically using the classical far-field formula.

Previous discussion highlights the need to bridge the theoretical gap concerning transverse
resolution estimation for aspect limited near-field cases. Accordingly, here the aim is to find an analytical
estimation of transverse resolution for such cases. To this end, we consider a 2D scalar multi-monostatic
single-frequency configuration where the buried scattering domain is a strip parallel to the half-space
interface.

Since we are within a linear framework, transverse resolution estimation can be estimated as the
width of the main beam of the reconstruction of a point-like target, i.e., the point-spread function
(psf) of the imaging procedure. In general, the psf (and hence resolution) can depend on the imaging
algorithm (or equivalently on the adopted regularisation scheme) and on the noise level. However, if
evanescent waves are negligible [22], the singular values of the scattering operator exhibit a step-like
behaviour. This behaviour entails that unless a very high signal-to-noise ratio (SNR) is available, one is
forced to retain a fixed number of singular functions: the so-called number of degrees of freedom (NDF).
Accordingly, the psf can be computed by a truncated singular value decomposition (TSVD) expansion.
Moreover, the corresponding achievable resolution is weakly dependent on the noise and the adopted
regularisation scheme, and mainly depends on the parameters of the configuration. However, for the
problem at hand, the SVD of the scattering operator is not known in closed form, and hence, by this
method, resolution cannot be estimated analytically. Therefore, in order to analytically estimate the
achievable transverse resolution, we follow the approach developed in [20, 21]. Basically, the regularised
inverse is approximated by the adjoint of the scattering operator once the scattered field has properly
been filtered through a suitable weighting function. In particular, by this inversion scheme both the
phase (as in standard migration schemes) and the amplitude of the propagator (involved in the scattering
operator) are properly compensated. The obtained transverse resolution estimation highlights the role of
the configuration parameters and captures the above mentioned spatially varying behaviour. Moreover,
it very well matches the psf obtained by a numerical TSVD, which is used here as ground truth.

Finally, the paper also includes a comparison with the homogeneous free-space case in order to
show how the half-space medium impacts on the resolution.

2. PROBLEM DESCRIPTION

The considered 2D scalar scattering problem is sketched in Fig. 1, and invariance is assumed along
the y-axis. The background medium consists of two homogeneous non-magnetic (i.e., the magnetic
permeability is everywhere the one of free-space μ0) half-spaces separated by a planar interface at
z = 0, with their dielectric permittivity and wave-numbers being εu, ku for the upper half-space and εl,
kl for the lower one. In particular, the lower medium is considered electromagnetically denser than the
upper one, that is kl > ku.

The unknown targets are embedded in the lower half-space and assumed to reside within the
segment SD (i.e., the investigation domain) located at zs < 0. The incident field is radiated by a y-
polarized line source of unitary amplitude. The time dependence is assumed equal to ejwt and omitted.
The only y component of the scattered field is collected by exploiting a multi-monostatic measurement
configuration, where the transmitting and receiving antennas are located at the same position in the
upper half-space. The antenna system moves along the segment OD = [−X0,X0] (i.e., the observation
domain) of the x-axis located at the height zo > 0 and parallel to SD.

Under the Born approximation, the contrast function χ and scattered field are linked through the
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Figure 1. Geometry of the problem.

following scattering operator
A : χ ∈ L2(SD) → E ∈ L2(OD) (1)

where L2(SD) and L2(OD) represent the set of square integrable functions supported over SD and OD,
respectively. The χ function is defined as (εs()̇− εl)/εl, with εs()̇ being the dielectric permittivity of the
unknown scatterer. The explicit form of the operator is given by

E(xo) = k2
l

∫
SD

G2(xo, x, zs)χ(x)dx xo ∈ OD (2)

with G(·) being the Green function pertinent to the two-layered background medium whose expression
in terms of the Weyl expansion is

G(xo, x, zs) =
i

2π

∫ ∞

−∞
Ĝ(kx, zo, zs)e−jkx(xo−x)dkx (3)

with

Ĝ(kx, zo, zs) =
1
2
τ(kx)ejkzlzse−jkzuzo

τ(kx) =
2

kzl + kzu

kzl =

⎧⎨
⎩
√

k2
l − k2

x if kx ≤ kl

−j
√

k2
x − k2

l if kx > kl

and

kzu =

{ √
k2

u − k2
x if kx ≤ ku

−j
√

k2
x − k2

u if kx > ku

Note that the square in Eq. (2) takes into account the multi-monostatic measurement configuration.
By considering zo, zs > λl > λu, the Green function in Eq. (3) can be approximated as [15]

G(xo, x, zs) ≈ h(xo, x, zs)e−jφ(xo, x, zs) (4)
where h(xo, x, zs) takes into account the relevant amplitude factors, with φ(xo, x.zs) = ku(Ru + Rl),
Ru =

√
(xo − xm(xo, x, zs))2 + z2

o , Rl = n
√

(xm(xo, x, zs) − x)2 + z2
s , n =

√
εl/εu being the refractive

index, and xm(xo, x, zs) is the refraction point at the half-space interface according to Snell’s law
xo − xm√

(xo − xm)2 + z2
o

= n
xm − x√

(xm − x)2 + z2
s

(5)



148 Maisto, Solimene, and Pierri

The imaging problem consists in solving Eq. (2) for χ. In particular, in view of the linearity of
the problem, the resolution can be estimated by considering the reconstruction of a point-like scatterer,
which is the so-called point-spread function. More in detail, here, we adopt the classical Rayleigh’s
criterion, which consists in estimating the achievable resolution as the distance between the maximum
and the first zero of the point-spread function of the imaging procedure. Note that this also represents
the so-called two-point resolution, which is the distance between two point-like targets in order to be
distinguishable in the reconstruction. Fig. 2 illustrates the meaning of resolution.

Figure 2. Graphical explanation of resolution.

By using the singular system {un, vn, σn}∞n=0 of the scattering operator, with uns and vns spanning
Dom(A) and R̄(A), respectively, the solution of Eq. (2) can be formally expressed as

χ(x) =
∞∑

n=0

〈E + N , vn〉
σn

un(x) (6)

where 〈·, ·〉 represents the scalar product in the field space, and N is the noise. Since A is compact,
the inverse scattering problem is ill-posed [23]. Hence, regularisation is mandatory and the achievable
resolution results limited. As a consequence, the reconstruction χR is a filtered version of the unknown
χ, that is

χR(x) =
∫

SD
psf(x, x′)χ(x′)dx′ (7)

with the filtering kernel just given by the psf(·, ·). Accordingly, by studying the psf one gets insights
not only on the two-point resolution but also on the filtering that the unknown undergoes during the
reconstruction process. Therefore, estimating the resolution is basically a measure of the finest detail
about the unknown that can be reconstructed.

A simple way to achieve regularisation is to truncate the singular value decomposition (TSVD) [16].
If ε is the noise dependent truncation level and Nε the number of singular values above it, thenn by
considering, in Eq. (6), a point-like target located at x′ it yields the following psf expression

psf(x, x′) =
Nε∑

n=0

un(x′)un(x) (8)

Equation (8) shows how the psf, and hence the resolution can be in general noise dependent.
Indeed, this is particularly true when evanescent waves are relevant [22]. For the case at hand (see
next sections), the singular values exhibit an abrupt exponential decay beyond a certain critical index.
Hence, it is natural to identify such an index as the NDF of the problem. As a consequence, the point-
spread function turns out to be weakly dependent on the signal to noise ratio (SNR), and the resolution
mainly depends on the configuration parameters, which in turn determine the mentioned critical index.

We are not able, herein, to work out the relevant singular system. Hence, in order to obtain
the point-spread function, we follow the same approach developed in [20, 21] where a weighted adjoint
method is exploited. This procedure permits to directly approximate the point-spread function so that
Eq. (8) (computed numerically) will be solely used as a benchmark in order to check the analytical
estimation. The obtained point-spread function will be also used to estimate the NDF [21].
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3. POINT-SPREAD FUNCTION ESTIMATION

As anticipated above, to obtain the reconstruction, we employ a weighted adjoint inversion scheme.
Accordingly, the reconstruction is written as

χR(x) = (A†W (x, xo)Aχ)(x) =
∫ Xs

−Xs

χ(x′)dx′

×
∫ X0

−X0

W (x, xo)h∗2(xo, x)h2(xo, x
′)e2j[φ(xo, x)−φ(xo, x′)]dxo (9)

where, besides the adjoint operator kernel, one can recognise the weighting function W (x, xo). As is
well known, inversion through the adjoint operator allows to get stable reconstructions, but such an
inversion scheme is not a regularisation in the sense of Tichhonov [16]. Basically, this is because while
the propagator phase is precisely compensated in correspondence to the target position, the amplitude
term is not addressed properly. The weighing function aims at remedying such a lack. In particular,
W must be chosen so that the corresponding point-spread function is as close as possible to a filtered
version of a Dirac-delta function.

In order to proceed further in that direction and find the resolution, the idea is to recast
A†W (x, xo)A as a Fourier type integral operator.

To this end, the Fundamental Theorem of Calculus (FTC) is used to express the phase term as

2
[
φ(xo, x) − φ(xo, x

′)
]

= 2
∫ x

x′

∂φ(xo, p)
∂p

dp (10)

Now, introduce the transformation p = x′+α(x−x′) and replace the integration in p with the integration
in α. Clearly α is an auxiliary integration variable that must range from 0 to 1 because p ranges from
x′ to x. Upon performing the aforesaid change of the integration variable, Eq. (10) is rewritten as

2
[
φ(xo, x) − φ(xo, x

′)
]

= (x − x′)2
∫ 1

0

∂φ(xo, p)
∂p

∣∣∣∣
p=x′+α(x−x′)

dα (11)

Finally, by putting

w(x, x′, xo) = 2
∫ 1

0

∂φ(xo, p)
∂p

∣∣∣∣
p=x′+α(x−x′)

dα (12)

we obtain
2
[
φ(xo, x) − φ(xo, x

′)
]

= (x − x′)w(x, x′, xo) (13)

The function w(x, x′, xo) is continuous and monotonic with respect to xo (hence invertible) ∀x, x′.
This allows to replace the integration in xo with the integration in w. Then, by centring around zero
the integration of w, we set

Δw(x, x′,X0) =
w(x, x′,−X0) − w(x, x′,X0)

2
(14)

and

wm(x, x′,X0) =
w(x, x′,−X0) + w(x, x′,X0)

2
(15)

Note that because of Eq. (12), we have

wm(x − x′) =
[
w(x, x′,−X0) + w(x, x′,X0)

2

]
(x − x′)

= (x − x′)
∫ 1

0

∂φ(−X0, p)
∂p

∣∣∣∣
p=x′+α(x−x′)

dα + (x − x′)
∫ 1

0

∂φ(X0, p)
∂p

∣∣∣∣
p=x′+α(x−x′)

dα (16)

Then, by inserting in Eq. (16), Eq. (11) evaluated for xo = X0 and xo = −X0, we obtain

wm(x − x′) = γ(x) − γ(x′) (17)
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with γ(x) = [φ(−X0, x) + φ(X0, x)]. Accordingly, Eq. (9) becomes

(A†WAχ)(x) =
∫ Xs

−Xs

χ(x′)ej(γ(x)−γ(x′))
∫ Δw(x, x′, X0)

−Δw(x, x′, X0)
H(w̄ + wm, x, x′)ejw̄(x−x′)dw̄dx′ (18)

with
H(w, x, x′) = −W (xo(w), x)h∗2(xo(w), x)h2(xo(w), x′)

dxo

dw

In particular, by comparing Eq. (18) with Eq. (7), one can identify the inner integral (i.e., the one
with respect to w̄) as the psfW (x, x′), where subscript W is just a reminder that the weighted inversion
scheme has been employed. In particular, the expected spatially varying behaviour of transverse
resolution is evident since the spectral integration interval depends on x and x′.

In order to avoid unwanted “tapering” that can reduce resolution, the amplitude term H still
needs to be compensated. To this end, we note that the leading order contribution of the integral
in w̄ of Eq. (18) occurs for x − x′ = 0 [24]. Then, the amplitude factor can be approximated as
H(w, x, x′) ≈ H(w, x′, x′) = H(w, x′), which helps us in the choice of the weighting function W . Indeed,
the best we can do is to equalize the amplitude factor so that H(w, η′) = 1. In view of the definition of
H(·) and since at x = x′

w(x′, x′, xo) = w(x′, xo) = 2
∂φ(xo, x

′)
∂x′ (19)

and
dxo

dw̄
=

dw

dxo

−1

=
[
2
∂2φ(xo, x)

∂xo∂x′

]−1

(20)

then

W (w, x′) = 2
∣∣∣∣∂2φ(xo, x)

∂xo∂x

∣∣∣∣ 1
|h2(xo, x)|2 (21)

Accordingly, Eq. (18) becomes

(A†WAχ)(x) =
∫ Xs

−Xs

χ(x′)ej(γ(x)−γ(x′))
∫ Δw(x, x′, X0)

−Δw(x, x′, X0)
ejw̄(x−x′)dw̄dx′ (22)

Now, by introducing the transformation

η(x) = [φ(−X0, x) − φ(X0, x)] (23)

it can be shown, by following the same passages used for deriving Eq. (17), that

Δw(x, x′,X0)(x − x′) = η(x) − η(x′) (24)

and hence Eq. (22) is rewritten as

(A†WAχ)(η) =
∫ η′(Xs)

η′(−Xs)
χ(η′)2ej(γ(η)−γ(η′))sinc(η − η′)Δw

dx′

dη′
dη′ (25)

Finally, because of Eq. (19), Δw =
[

dη′
dx′

]
, and the following (sought after) expression for the

point-spread function is obtained

psfW (η, η′) = 2ej(γ(η)−γ(η′))sinc(η − η′) (26)

It is interesting to remark that the spatially varying behaviour of the spectral interval, mentioned
above, has been now transformed in the nonlinear link between the variables x and η, which clearly
implies a spatially varying resolution. In particular, on denoting xm(−X0, x, zs) = f1(x) and
xm(X0, x, zs) = f2(x), the explicit form of Eq. (23) is obtained as

η(x) = ku

[√
(X0 + f1(x))2 + z2

o + n
√

(f1(x) − x)2 + z2
s −

√
(X0 − f2(x))2 + z2

o

−n
√

(f2(x) − x)2 + z2
s

]
(27)
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Note that the analytical expression for f1(x) and f2(x) can be derived by solving Eq. (5) for xo = −X0

and xo = X0, respectively, for each x ∈ SD. However, for symmetry reasons f1(−x) = −f2(x), and
Eq. (27) can be rewritten as

η(x) = ku

[√
(X0 + f1(x))2 + z2

o + n
√

(f1(x) − x)2 + z2
s −

√
(X0 + f1(−x))2 + z2

o

−n
√

(f1(−x) + x)2 + z2
s

]
(28)

This makes clear that η(x) is an odd function of x, and hence, η(Xs) = −η(−Xs). Moreover, only
the calculation of f1(x) is required. The explicit expression of f1(x) is given in the appendix.

In order to check the theoretical findings, the psfW returned by Eq. (26) has been compared with
the psf obtained through Eq. (8), the latter obtained by numerically computing the singular system
of A and by retaining in Eq. (8) the singular functions corresponding to the singular values preceding
the abrupt decay (see next discussion on NDF). The simulations show an excellent agreement between
psfW and psf . As a representative example, here we report the case shown in Fig. 3, in which the
upper half-space has been considered as the free-space, so that ku = k0, εu = ε0 and λu = λ0, whereas
the lower half-space has εl = εrε0. This assumption will be kept in all of the following examples. As
can be appreciated, the two functions overlap very well; accordingly, it can be concluded that Eq. (26)
works very well and can be used to estimate the achievable resolution.

4. RESOLUTION AND NDF ESTIMATION

As shown in the previous section, psfW returns a good estimation of psf . Hence, it can be used to
estimate the transverse resolution. By applying the Rayleigh’s criterion to Eq. (26), the achievable
resolution can be estimated as the width of main-beam of the point-spread function. Accordingly, it is
immediately seen that, in the η variable, resolution is

Δη = π (29)
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Figure 3. Normalized point spread functions’ amplitudes for εr = 9, a = 10λ0, X0 = 9.5λ0, z1 = −5λ0

and zo = 2λ0. The blue lines refer to psf whereas the dotted red ones to psfW . In the top panel the
point scatterer is located at −1λ0 and in the bottom at −9λ0.
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which, in terms of the x variable, reads as

η(x + Δx) − η(x) = π (30)

In order to explicitly get the resolution in x, Eq. (30) should be solved for Δx. However, unlike
the case of homogeneous medium [20], this does not appear as an easy task. Nonetheless, that equation
links, even if implicitly (i.e., as an implicit function), the configuration parameters and Δx. Therefore,
it allows to foresee the achievable resolution, once the configuration has been set, without running the
reconstruction procedure. Moreover, some important features can be directly deduced by inspection: as
we already mentioned above, since x and η are linked through a nonlinear relationship, Δx is spatially
varying [25]. This indeed could have already been observed from Fig. 3 since the main-beam width of
the psf changes with the positions of the point-like target.

An explicit but approximate expression for Δx can be obtained by truncating the Taylor series of
η(x + Δx) at the first term. By doing so it yields

Δx ≈ π
dη
dx

=
λu⎧⎪⎪⎪⎨

⎪⎪⎪⎩
2

(X0 + f1(x))√
(X0 + f1(x))2 + z2

o

f ′
1(x) + n

(f1(x) − x)√
(f1(x) − x)2 + z2

s

[f ′
1(x) − 1]

− (X0 + f1(−x))√
(X0 + f1(−x))2 + z2

o

f ′
1(−x) − n

(f1(−x) + x)√
(f1(−x) + x)2 + z2

s

[f ′
1(−x) + 1]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(31)
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Figure 4. Comparison between Δx (solid lines) and the one returned by (31) (dotted lines) for different
values of the geometrical parameters. (a) n = 3, zs = −5λ0 and zo = 2λ0 while X0 = 10λ0 (blue and
yellow lines), X0 = 12λ0 (red and black lines) and X0 = 15λ0 (green and violet lines); (b) X0 = 15λ0,
zs = −5λ0 and zo = 2λ0 while n =

√
2 (blue and yellow lines), n = 3 (red and black lines) and n = 6

(green and violet lines); (c) n = 3, zs = −5λ0 and X0 = 15λ0 while zo = 10λ0 (blue and yellow lines),
zo = 5λ0 (red and black lines) and zo = 2λ0 (green and violet lines); (d) n = 3, z0 = 5λ0 and X0 = 15λ0

while zs = −10λ0 (blue and yellow lines), zs = −5λ0 (red and black lines) and zs = −2λ0 (green and
violet lines).
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with f ′
1 being the derivative of f1 with respect to x. Obviously, Eq. (31) becomes more accurate as Δx

decreases.
Figure 4 shows the comparison between Δx and the one returned by Eq. (31) (dotted lines) as

the configuration parameters vary. As can be seen, Δx is spatially varying and gets worse when x
moves toward the edge of SD. Also, such a spatially varying behaviour becomes more marked when
zo − z1 increases or X0 and n decrease. Moreover, Eq. (31) returns an excellent estimation of Δx. This
behaviour of the resolution can be more easily explained by assuming X0 large so that f1(x) 
 x+ zs√

n2−1
,

and Eq. (31) is simplified as

Δx 
 λu

2

[
(X̄0 + x)√

(X̄0 + x)2 + z2
o

+
(X̄0 − x)√

(X̄0 − x)2 + z2
o

] =
λu

2(sin θr − sin θl)
(32)

with X̄0 = X0 + zs√
n2−1

being the equivalent measurement aperture and

sin θr =
(X̄0 − x)√

(X̄0 − x)2 + z2
o

and

sin θl = − (X̄0 + x)√
(X̄0 + x)2 + z2

o

Firstly, Eq. (32) clearly shows that as X0 increases, Δx tends to become constant. Therefore, the
nonuniform behaviour of the resolution is essential due to truncation effects (i.e., limited observation
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Figure 5. Comparison between Δx (solid lines) and Δxh (dotted lines) for different values of the
geometrical parameters. (a) n = 3, zs = −5λ0 and zo = 2λ0 while X0 = 10λ0 (blue lines), X0 = 12λ0

(red lines) and X0 = 15λ0 (green lines); (b) X0 = 15λ0, zs = −5λ0 and zo = 2λ0 while n =
√

2 (blue
line), n = 3 (red line) and n = 6 (green line), the only black dotted-line refers to the homogeneous case;
(c) n = 3, zs = −5λ0 and X0 = 15λ0 while zo = 10λ0 (blue lines), zo = 5λ0 (red lines) and zo = 2λ0

(green lines); (d) n = 3, z0 = 5λ0 and X0 = 15λ0 while zs = −10λ0 (blue lines), zs = −5λ0 (red lines)
and zs = −2λ0 (green lines).
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domain). In particular, Δx approaches λu/4 when X0 → ∞ (see Fig. 4(a)), which coincides with the
estimation reported in [19] where an unbounded observation domain was considered.

Secondly, since in Eq. (32) zs is divided by
√

n2 − 1, the resolution will be more sensitive to zo

than zs when n increases. This can be actually appreciated by comparing Figs. 4(c) and 4(d). More
in general, Eq. (32) highlights how the resolution depends on the angular sector subtended by the
measurement aperture. Since the latter depends on x, the resolution is spatially varying (as shown
above). Moreover, that angular sector enlarges when X0 and/or z0 and/or zs and/or n increase; this of
course qualitatively justifies the theoretical results reported in Fig. 4.

At this juncture, in order to appreciate the role of the half-space scenario, it is interesting to
compare the obtained resolution with the one of the homogeneous medium, Δxh, (whose analytical
expression has been derived in [20]). This comparison is shown in Fig. 5, where Δx (solid line) and
Δxh (dotted line) are reported for different parameters of the configuration. As can be appreciated,
having fixed the configuration parameters, Δx is always lower than Δxh. This entails that the interface
improves the resolution (when OD is bounded indeed).

Finally, we switch to consider the NDF estimation. As mentioned above, the NDF is the number
of significant singular values. However, since here the singular system is not known in closed form,
borrowing from optics [26], the NDF is estimated by counting how many resolvable point-spread
functions are required to fill the investigation domain. This approach can be conveniently worked
out in the η domain, where the investigation domain is [−η(Xs), η(Xs)]. Accordingly, we obtain

NDF = 2
η(Xs)
Δη

(33)

In particular, since Eq. (33) does not in general return an integer value, and the NDF is estimated
as the lowest integer which is greater than Eq. (33). In Fig. 6, some examples are reported to show the
accuracy of Eq. (33). In particular, in that figure the singular value behaviour is reported for different
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Figure 6. Normalized singular values of A for (a) n = 3 a = 10λ0, X0 = 10λ0, z1 = −5λ0 and zo = 2λ0,
(b) n =

√
3 a = 10λ0, X0 = 10λ0, z1 = −5λ0 and zo = 5λ0, (c) n = 2 a = 10λ0, X0 = 15λ0, z1 = −λ0

and zo = 2λ0. The dashed black line indicates the location of the knee. In each figure the values of
NDF estimated by (33) are provided.
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configurations along with vertical lines which mark the estimation returned by Eq. (33). As anticipated,
the singular values actually exhibit a nearly step-like behaviour, and Eq. (33) returns a good estimation
where the abrupt decay starts.

5. CONCLUSION

In this paper a linear inverse scattering problem for an inhomogeneous two-layered background medium
has been addressed. In particular, in order to keep notation simple, a scalar two dimensional
configuration has been addressed, where the investigation and observation domains are parallel
bounded strips separated by a distance greater than the wavelength. In particular, a multi-monostatic
measurement configuration has been considered.

The focus in this paper is to estimate the achievable transverse resolution and to highlight its
dependence on the configuration parameters. To this end, by exploiting the approach developed
in [20, 21], we find an expression for the psf, then, according to the Raylegth’s criterion, an analytical
estimation of the resolution. It is shown that because of the aspect limited configuration, transverse
resolution is spatially varying and positively affected by the half-space scenario.

As remarked above, the obtained results hold as long as the singular values exhibit a step-like
behaviour (unless unfeasible SNR is available). This condition basically rules out the cases where
evanescent waves are relevant. In such cases, a different technique, as in [22], can be used.
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APPENDIX A.

In this appendix, an analytical expression for f1(x) is derived. The function f1(x) solves Eq. (5) for
xo = −X0, so

−X0 − f1(x)√
(X0 + f1(x))2 + z2

o

= n
f1(x) − x√

(f1(x) − x)2 + z2
s

(A1)

for each x ∈ SD. Equation (34) is equivalent to solving the following forth degree equation

af4
1 + bf3

1 + cf2
1 + df1 + e = 0 (A2)

with

a = (1 − n2)

b = −2(1 − n2)(x − X0)

c = (X2
0 + x2 − 4X0x)(1 − n2) + z2

1 − n2z2
o

d = −2((xX2
0 − X0x

2)(1 − n2) − X0z
2
1 − n2z2

ox)

e = X2
0x2(1 − n2) + z2

1X2
0 − n2z2

ox2;

For each x ∈ SD, four solutions to Eq. (35) can be obtained, given by

fa
1 (x) = − b

4a
− S + 1/2

√
−4S2 − 2p + q/S

f b
1(x) = − b

4a
− S − 1/2

√
−4S2 − 2p + q/S

f c
1(x) = − b

4a
+ S + 1/2

√
−4S2 − 2p − q/S

fd
1 (x) = − b

4a
+ S − 1/2

√
−4S2 − 2p − q/S

(A3)
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with

p =
8ac − 3b2

8a2

q =
b3 − 4abc + 8a2d

8a3

S =
1
2

√
−2

3
p +

1
3a

(
Q +

Δo

Q

)

Q =

(
Δ1 +

√
Δ2

1 − 4Δ3
0

2

)1/3

Δ0 = c2 − 3bd + 12ae

Δ1 = 2c3 − 9bcd + 27b2e + 27ad2 − 72ace

However, only one of them fulfils Eq. (34). When X0 → ∞, Eq. (34) is simplified in

−1 = n
f1(x) − x√

(f1(x) − x)2 + z2
s

(A4)

whose solution becomes
f1(x) = x +

zs√
n2 − 1

(A5)
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