Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-14
DOA Estimation for Non-Circular Signal with Nested Array
By
Progress In Electromagnetics Research M, Vol. 86, 39-47, 2019
Abstract
A direction-of-arrival (DOA) estimation algorithm for non-circular signals with nested array is proposed. A closed formula is given to construct a partitioned fourth-order-cumulant (FOC) matrix by using the FOCs of received data. Then, an improved multiple signal classification (MUSIC) algorithm for non-circular signals (NC-MUSIC) based on FOC is introduced. The proposed algorithm shows higher estimation accuracy and angular resolution than some traditional NC-MUSIC algorithms, especially in the low SNR case. Some simulation experiments are proposed to prove the validity of the proposed algorithm.
Citation
Jing Zhao, Sheng Liu, Sihuan Que, Qikui Zou, and Mengmei Ou, "DOA Estimation for Non-Circular Signal with Nested Array," Progress In Electromagnetics Research M, Vol. 86, 39-47, 2019.
doi:10.2528/PIERM19072501
References

1. Zhang, X., X. Gao, G. Feng, and D. Xu, "Blind joint DOA and DOD estimation and identifiability results for MIMO radar with different transmit/receive array manifolds," Progress In Electromagnetics Research B, Vol. 18, 101-119, 2009.
doi:10.2528/PIERB09050603

2. Katkovnik, V., S. M. Lee, and H. Y. Kim, "Performance study of the minimax robust phased array for wireless communications," IEEE Transactions on Communications, Vol. 54, No. 4, 608-613, 2006.
doi:10.1109/TCOMM.2006.873068

3. Zhang, X. F., M. Zhou, H. Chen, and F. J. Li, "Two-dimensional DOA estimation for acoustic vector-sensor array using a successive MUSIC," Multidimensional System and Signal Processing, Vol. 25, No. 3, 583-600, 2014.
doi:10.1007/s11045-012-0219-y

4. Gounon, P., C. Adnet, and J. Galy, "Angular localization for noncircular signals," Traitement du Signal, Vol. 15, No. 1, 17-24, 1998.

5. Charge, P., Y. Wang, and J. Saillard, "A noncircular sources direction finding method using polynomial rooting," Signal Processing, Vol. 81, No. 8, 1765-1770, 2001.
doi:10.1016/S0165-1684(01)00071-8

6. Gao, F. F., A. Nallanathan, and D. Y. Wang, "Improved MUSIC under the coexistence of both circular and noncircular sources," IEEE Transactions on Signal Processing, Vol. 56, No. 7, 3033-3038, 2008.
doi:10.1109/TSP.2007.916123

7. Si, W. J., T. Zhu, and Y. M. Zhang, "DOA estimation in solving mixed circular and non-circular incident signals," Systems Engineering and Electronics, Vol. 34, 882-886, 2012.

8. Haardt, M. and F. Romer, "Enhancements of unitary ESPRIT for noncircular sources," The Proceeding of 2004 IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 2, 101-104, Montreal, Quebec, Canada, 2004.

9. Haardt, M. and A. J. Nossek, "Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden," IEEE Transaction on Signal Processing, Vol. 43, No. 5, 1232-1242, 1995.
doi:10.1109/78.382406

10. Liu, J., T. Z. Huang, and Y. Y. Zhou, "Extended propagator method for direction estimation of noncircular signals," Signal Processing, Vol. 24, No. 4, 556-560, 2008.

11. Liu, Z. X., Y. Li, M. A. Song, and J. Liu, "Extended propagator method for noncircular signals estimation with polynomial rooting," Journal of Air Force Engineering University, Vol. 12, No. 4, 58-63, 2011.

12. Gan, L., F. J. Gu, and P. Wei, "Estimation of 2-D DOA for noncircular sources using simultaneous SVD technique," IEEE Antennas Wireless and Propagate Letters, Vol. 7, 385-388, 2008.
doi:10.1109/LAWP.2008.2000875

13. Porat, B. and B. Friedlander, "Direction finding algorithms based on high-order statistics," IEEE Transactions on Signal Processing, Vol. 39, No. 9, 2016-2024, 1991.
doi:10.1109/78.134434

14. Dogan, M. C. and J. M. Mendel, "Application of cumulants to array processing — Part I: Aperture extension and array calibration," IEEE Transactions on Signal Processing, Vol. 43, No. 5, 1200-1216, 1995.
doi:10.1109/78.382404

15. Liu, J., T. Z. Huang, and Y. Y.Zhou, "A new forth-order direction finding algorithm for noncircular signals," Journal of Electronics and Information Technology, Vol. 30, 876-880, 2008.

16. Camps, A. and A. Cardama, "Infantes, D. Synthesis of large low redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 12, 1881-1883, 2001.
doi:10.1109/8.982474

17. Vaidyanathan, P. P. and P. Pal, "Sparse sensing wth co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 573-586, 2010.
doi:10.1109/TSP.2010.2089682

18. Liu, S., L. Yang, D. Li, H. L. Cao, and Q. P. Jiang, "2D DOA estimation for noncircular sources using L-shaped sparse array," Multidimensional Systems & Signal Processing, Vol. 29, No. 2, 489-502, 2018.
doi:10.1007/s11045-016-0402-7

19. Iizuka, Y. and K. Ichige, "Extension of nested array for large aperture and high degree of freedom," IEICE Communications Express, Vol. 6, No. 6, 381-386, 2017.
doi:10.1587/comex.2017XBL0031

20. Yang, M., L. Sun, X. Yuan, and B. X. Chen, "Improved nested array with hole-free DCA and more degrees of freedom," Electronics Letters, Vol. 52, No. 25, 2068-2070, 2016.
doi:10.1049/el.2016.3197

21. Huang, H., B. Liao, X. Wang, X. S. Guo, and J. Huang, "A new nested array configuration with increased degrees of freedom," IEEE Access, Vol. 6, 1490-1497, 2018.
doi:10.1109/ACCESS.2017.2779171