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DOA Estimation for Non-Circular Signal with Nested Array

Jing Zhao, Sheng Liu*, Sihuan Que, Qikui Zou, and Mengmei Ou

Abstract—A direction-of-arrival (DOA) estimation algorithm for non-circular signals with nested array
is proposed. A closed formula is given to construct a partitioned fourth-order-cumulant (FOC) matrix
by using the FOCs of received data. Then, an improved multiple signal classification (MUSIC) algorithm
for non-circular signals (NC-MUSIC) based on FOC is introduced. The proposed algorithm shows higher
estimation accuracy and angular resolution than some traditional NC-MUSIC algorithms, especially in
the low SNR case. Some simulation experiments are proposed to prove the validity of the proposed
algorithm.

1. INTRODUCTION

DOA estimation is one of the main research topics of array signal processing. It is widely applied
in many relevant fields, such as radar, wireless communication, and sonar [1–3]. Noncircular signals
(e.g., binary phase shift keying (BPSK) and amplitude modulated (AM) signals) are often employed
in digital communications due to the improved performance brought by noncircular properties. In [4],
a multiple signal classification (MUSIC) algorithm was presented for noncircular signals (called NC-
MUSIC). Subsequently, a rooting MUSIC algorithm for noncircular signals (called Root-NC-MUSIC)
was proposed in [5]. In [6], an improved NC-MUSIC algorithm aiming the coexistence of both circular
and noncircular sources was addressed. However, the performance of this algorithm deteriorates due
to the appearance of false peaks. In [7], the authors analyzed the cause for the appearance of false
peaks in the method [6] and proposed an improved scheme. In [8], the traditional unitary estimation of
signal parameters via rotational invariance technique (UESPRIT) [9] was applied in DOA estimation
of noncircular signals (called NC-UESPRIT). In order to reduce the computational burden caused by
eigenvalue decomposition (EVD), a propagator algorithm (PM) for noncircular signals (called NC-
PM) [10] and rooting propagator algorithm (called Root-NC-PM) [11] were proposed in succession.
In [12], a simultaneous singular value decomposition algorithm based on an L-shaped array was proposed
for 2D DOA estimation of noncircular signals. Using the FOCs of received data to construct a FOC
matrix instead of the covariance matrix formed by the second-order statistics (SOS) is an effective way
to extend the array aperture. Many DOA estimation methods based on FOC [13–15] were proposed by
scholars. In [15], the authors utilized the FOCs of received data to construct a high-order FOC matrix,
and an NC-MUSIC algorithm based on FOC was presented.

However, all these methods mentioned above are designed for uniform linear arrays (ULAs).
Compared with a uniform array, a sparse array has many obvious advantages for DOA estimation,
such as enhancing spatial resolution and improving estimation accuracy. However, these advantages
come out only when the array is designed rationally. There are many effective design methods of sparse
arrays, such as minimum redundancy array [16], coprime array [17, 18], and nested array [19–21].

In this paper, an improved nested array [20] is employed to estimate the DOA of noncircular
signals. FOCs of received data are used to construct a high-order FOC matrix, and a closed formula
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for constructing the FOC matrix is given. Then, an NC-MUSIC algorithm based FOC is derived.
Due to further expansion of the aperture, the proposed algorithm has better effect than some classical
algorithms in accuracy and angular resolution.

Notation: The operational symbols [•]∗, [•]T , [•]H , and ⊗ stand for conjugate, transpose,
conjugate transpose, and Kronecker product, respectively. [c]i:j denotes a vector consisting of the
ith to the jth elements of vector c.

2. SIGNAL MODEL

The nested array [20] consists of two sub-arrays shown as Fig. 1, where the last sensor of the
first subarray is the first sensor of the second subarray. Hence the number of sensors of this
array is N + M − 1. The sensors of the first array are arranged on the x-axis with coordinates
0, d, · · · , (N − 1)d, and the sensors of the second array are arranged on the x-axis with coordinates
(N − 1)d, 2Nd, · · · , (MN + M − N − 3)d, (MN + M − 3)d. Assume that d = λ/2, where λ is the
wavelength of incident signal.

d (N+1)d Nd

1 2 N - 1 N(1) 2 3 M - 1 M

The first array The second array

Figure 1. The structure of nested array.

Suppose that K far-field, narrowband, incoherent and non-circular signals s1(t), · · · , sK(t) come
from the directions θ1, θ2, · · · , θK . Denote θ = [θ1, θ2, · · · , θK ] and Δ = 2πd/λ, and the received vectors
of two arrays are given by {

x(t) = A(θ)s(t) + n1(t)

y(t) = B(θ)s(t) + n2(t)
(1)

where x(t) = [x1(t), · · · , xN−1(t), xN (t)]T ∈ CN×1, y(t) = [y1(t), · · · , yM−1(t), yM (t)]T ∈ CM×1,
s(t) = [s1(t), · · · , sK(t)]T ∈ CK×1 is the non-Gaussian non-circular signal vector; n1(t) =
[n12(t), · · · , n2M (t)]T ∈ CM×1 and n2(t) = [n21(t), · · · , n2M (t)]T ∈ CM×1 are the complex Gaussian
noise vectors received by two sub arrays; A(θ) = [a(θ1), · · · ,a(θK)] ∈ CN×K with a(θk) =
[1, exp(−iΔsin(θk)), · · · , exp(−iΔ(N − 1) sin(θk))]

T and B(θ) = [b(θ1), · · · ,b(θK)] ∈ CM×K with
b(θk) = [exp(−iΔ(N − 1) sin(θk)), exp(−iΔ2N sin(θk)), · · · , exp(−iΔ(MN +M − 3) sin(θk))]

T are the
manifold matrices.

Assume that all the incident signals have the non-circular property. Thus, we can get the conjugate
expression of received vectors as [10–12]{

x∗(t) = A∗(θ)Φ∗s(t) + n∗
1(t)

y∗(t) = B∗(θ)Φ∗s(t) + n∗
2(t)

(2)

where Φ = diag{e−jφ1 , e−jφ2 , · · · , e−jφK}, and φk, k = 1, 2, · · · ,K, is the arbitrary phase shift of the
kth signal.

Remark : In this paper, we assume that the sensors are isotropic, and ignore the influence of mutual
coupling between two sensors. Because the improved nested array [20] has higher degrees of freedom
than the other sparse arrays [17, 19] and a more regular array structure than minimum redundancy
array [16], we use this array geometry to estimate the DOA of non-circular signals.

3. ALGORITHM DESCRIPTION

3.1. Construction of FOC Matrix

In this subsection, we use the FOCs of received data to construct a FOC matrix which has equivalent
function as the covariance matrix. Using the position sum between two sensors, we can get
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N +MN +2M − 4 virtual sensors with nonnegative position. Meanwhile, using the position difference
between two sensors, we can get MN+M−2 virtual sensors with nonnegative position. In order to cut
down the repeated data in FOC matrix and reduce the complexity for dealing with the FOC matrix,
we only use the FOCs of received data from some specific sensors.

Firstly, according to the non-circular property of non-circular signals, we denote four FOCs as⎧⎪⎪⎨
⎪⎪⎩

cum{sk, s∗k, s∗k, sk} = s0k
cum{s∗k, s∗k, s∗k, sk} = ejφks0k
cum{sk, s∗k, sk, sk} = e−jφks0k
cum{s∗k, s∗k, sk, sk} = s0k

(3)

Then,we construct four FOCmatricesC1∈C(MN+M−2)×(MN+M−2), C2∈C(MN+M−2)×(MN+2M+N−3),
C3 ∈ C(MN+2M+N−3)×(MN+M−2) and C4 ∈ C(MN+2M+N−3)×(MN+2M+N−3). Let Ci(u, v) be the ele-
ment on the uth row and the vth column of Ci.

Denote the unique decomposition of u and v as{
u = u1 + u2(N + 1)

v = v1 + v2(N + 1)
(4)

where 0 ≤ u1, v1 ≤ N . Then, we can construct C1 by

C1(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cum{yM (t), y∗M−u2
(t), y∗M (t), yM−v2(t)}, when u1 = 0, v1 = 0

cum{yu2+1(t), x
∗
N−u1+1(t), y

∗
M (t), yM−v2(t)}, when u1 �= 0, v1 = 0

cum{yM (t), y∗M−u2
(t), y∗v2+1(t), xN−v1+1(t)}, when u1 = 0, v1 �= 0

cum{yu2+1(t), x
∗
N−u1+1(t), y

∗
v2+1(t), xN−v1+1(t)}, when u1 �= 0, v1 �= 0

(5)

Denote the unique decomposition of u and v as⎧⎨
⎩

u = u1 + u2(N + 1)

v −N + 1 = v1 + v2N, N ≤ v ≤ N − 1 +MN

v −N + 1−MN = v1 + 2v2, N +MN ≤ v ≤ N +MN + 2M − 3

(6)

where 0 ≤ u1 ≤ N , 1 ≤ v1 ≤ N for N ≤ v ≤ N − 1 + MN and 1 ≤ v1 ≤ 2 for N + MN ≤ v ≤
N +MN + 2M − 3. Then, we can construct C2 by

C2(u, v) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cum{yM (t), y∗M−u2
(t), xv(t), x1(t)}, if u1 = 0, v ≤ N − 1

cum{yM (t), y∗M−u2
(t), yv2+1(t), xv1(t)}, if u1 = 0, N ≤ v ≤ N − 1 +MN

cum{yM (t), y∗M−u2
(t), yM−2+v1(t), y2+v2(t)}, if u1 = 0, N +MN ≤ v ≤ N +MN + 2M − 3

cum{yu2+1(t), x
∗
N−u1+1(t), xv(t), x1(t)}, if u1 �= 0, v ≤ N − 1

cum{yu2+1(t), x
∗
N−u1+1(t), yv2+1(t), xv1(t)}, if u1 �= 0, N ≤ v ≤ N − 1 +MN

cum{yu2+1(t), x
∗
N−u1+1(t), yM−2+v1(t), y2+v2(t)}, if u1 �= 0, N +MN ≤ v ≤ N +MN + 2M − 3

(7)

Denote the unique decomposition of u and v as⎧⎨
⎩

v = v1 + v2(N + 1)

u−N + 1 = u1 + u2N, N ≤ u ≤ N − 1 +MN

u−N + 1−MN = u1 + 2u2, N +MN ≤ u ≤ N +MN + 2M − 3

(8)

where 0 ≤ v1 ≤ N , 1 ≤ u1 ≤ N for N ≤ u ≤ N − 1 + MN and 1 ≤ u1 ≤ 2 for N + MN ≤ u ≤
N +MN + 2M − 3. Then, we can construct C3 by

C3(u, v) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cum{x∗u(t), x∗1(t), y∗M (t), yM−v2(t)}, if u ≤ N − 1, v1 = 0

cum{y∗u2+1(t), x
∗
u1
(t), y∗M (t), yM−v2(t)}, if N ≤ u ≤ N − 1 +MN, v1 = 0

cum{y∗M−2+u1
(t), y∗2+v2(t), y

∗
M (t), yM−v2(t)}, if N +MN ≤ u ≤ N +MN + 2M − 3, v1 = 0

cum{x∗u(t), x∗1(t), y∗v2+1(t), xN−v1+1(t)}, if u ≤ N − 1, v1 �= 0

cum{y∗u2+1(t), x
∗
u1
(t), y∗v2+1(t), xN−v1+1(t)}, if N ≤ u ≤ N − 1 +MN, v1 �= 0,

cum{y∗M−2+u1
(t), y∗2+v2

(t), y∗v2+1(t), xN−v1+1(t)}, if N +MN ≤ u ≤ N +MN + 2M − 3, v1 �= 0,

(9)
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Denote the unique decomposition of u and v as⎧⎪⎪⎨
⎪⎪⎩

u−N + 1 = u1 + u2N, N ≤ u ≤ N − 1 +MN

u−N + 1−MN = u1 + 2u2, N +MN ≤ u ≤ N +MN + 2M − 3

v −N + 1 = v1 + v2N, N ≤ v ≤ N − 1 +MN

v −N + 1−MN = v1 + 2v2, N +MN ≤ v ≤ N +MN + 2M − 3

(10)

where 1 ≤ u1, v1 ≤ N for N ≤ u, v ≤ N − 1 + MN , and 1 ≤ u1, v1 ≤ 2 for N + MN ≤ u,
v ≤ N +MN + 2M − 3. Then, we can construct C4 by

C4(u, v) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cum{x∗
u(t), x

∗
1(t), xv(t), x1(t)}, if u ≤ N − 1, v ≤ N − 1

cum{x∗
u(t), x

∗
1(t), yv2+1(t), xv1(t)}, if u ≤ N − 1, N ≤ v ≤ N − 1 +MN

cum{x∗
u(t), x

∗
1(t), yM−2+v1(t), y2+v2(t)}, if u ≤ N − 1, N +MN ≤ v ≤ N +MN + 2M − 3

cum{y∗
u2+1(t), x

∗
u1
(t), xv(t), x1(t)}, if N ≤ u ≤ N − 1 +M,v ≤ N − 1

cum{y∗
u2+1(t), x

∗
u1
(t), yv2+1(t), xv1(t)}, if N ≤ u ≤ N − 1 +M,N ≤ v ≤ N − 1 +MN

cum{y∗
u2+1(t), x

∗
u1
(t), yM−2+v1(t), y2+v2(t)}, if N ≤ u ≤ N − 1 +M,N +MN ≤ v ≤ N +MN + 2M − 3

cum{y∗
M−u1

(t), y∗
2+u2

(t), xv(t), x1(t)}, if N +MN ≤ u ≤ N +MN + 2M − 3, v ≤ N − 1

cum{y∗
M−u1

(t), y∗
2+u2

(t), yv2+1(t), xv1(t)}, if N +MN ≤ u ≤ N +MN + 2M − 3, N ≤ v ≤ N − 1 +MN

cum{y∗
M−u1

(t), y∗
2+u2

(t), yM−2+v1(t), y2+v2(t)}, if N +MN≤u≤N+MN+2M−3, N+MN≤v≤N+MN+2M−3

(11)

Denote C̃2 as the matrix after moving the (N +MN + 2M − 4)th column of C2. Denote C̃3 as

the matrix after moving the (N +MN + 2M − 4)th row of C3. Denote C̃4 as the matrix after moving
the(N +MN + 2M − 4)th column and the (N +MN + 2M − 4)th row and of C4.

We can form a high-order matrix C ∈ C(2MN+3M+N−6)×(2MN+3M+N−6) as

C =

[
C1 C̃2

C̃3 C̃4

]
(12)

Denote a vector ã2(θk) ∈ C(N+MN+2M−3)×1 as

ã2(θk) =

⎡
⎣ a1(θk)

b(θk)⊗ a(θk)

b2(θk)⊗ b3(θk)

⎤
⎦ (13)

where a1(θk) = [a(θk)]1:N−1, b2(θk) = [b(θk)]2:M and b3(θk) = [b(θk)]M−1:M .

Using ã2(θk), denote the vector ā2(θk) ∈ C(N+MN+2M−4)×1 after removing the (N+MN+2M−4)th
element of ã2(θk).

From Eqs. (4)–(12), matrix C can be expressed as a product of three matrices as

C =

[
Ā1S0Ā

H
1 Ā1S0(Φ

∗)HĀT
2

Ā∗
2Φ

∗S0Ā
H
1 Ā2S0Ā

T
2

]
=

[
Ā1

Ā∗
2(Φ

∗)

]
S0

[
ĀH

1 (Φ∗)HĀT
2

]
(14)

where Ā1 = [ā1(θ1), ā1(θ2), · · · , ā1(θK)], Ā2 = [ā2(θ1), ā2(θ2), · · · , ā2(θK)], ā1(θk) = [1, e−iΔ sin(θk), · · · ,
e−iΔ(MN+M−3) sin(θk)]T ∈ C(MN+M−2)×1 and S0 = diag{s01, s02, · · · , s0K}.

3.2. NC-MUSIC Based on FOC

Implementing EVD on the matrix C yields

C = UsΣsU
H
s +UnΣnU

H
n (15)

where Σs denotes a K×K diagonal matrix formed by K largest eigenvalues, and Σn denotes a diagonal
matrix formed by the rest 2MN +3M +N − 6−K smaller eigenvalues. Matrix Us is composed by the
eigenvectors corresponding to the K largest eigenvalues, and Un consists of the rest eigenvectors.



Progress In Electromagnetics Research M, Vol. 86, 2019 43

Denote matrix Ā =
[
(Ā1)

T (Ā∗
2(Φ

∗))T
]T

, and the relation between Ā and Un can be
formulated as

ĀHUn = 0 (16)

Divide Un into two parts

Un =

[
Un1

Un2

]
(17)

where Un1 ∈ C(MN+M−2)×K and Un2 ∈ C(MN+N+2M−4)×K .
As the traditional NC-MUSIC algorithm [4], we can get the estimation of θ = [θ1, θ2, · · · , θK ] by

minimizing the cost function f(θ, φ)

f(θ, φ) =

[
ā1(θ)

ejφā∗2(θ)

]H [
Un1

Un2

] [
UH

n1 UH
n2

] [ ā1(θ)
ejφā∗2(θ)

]

=

[
1

ejφ

]H [
ā1(θ) 0

0 ā∗2(θ)

]H [
Un1U

H
n1 Un1U

H
n2

Un2U
H
n1 Un2U

H
n2

] [
ā1(θ) 0

0 ā∗2(θ)

] [
1

ejφ

]
(18)

Let ∂f(θ,φ)
∂φ = 0, we can get the new cost function g(θ) as [4]

g(θ) = āH1 Un1U
H
n1ā1 + āT2 Un2U

H
n2ā

∗
2 − 2

∥∥āH1 Un1U
H
n2ā

∗
2

∥∥ (19)

At last, we can get the estimation of θ = [θ1, θ2, · · · , θK ] by 1-D peak search for 1/g(θ).

4. SIMULATION RESULTS

In this section, two groups of simulation experiments are proposed to evaluate the performance of
proposed NC-MUSIC with nested array. The proposed NC-MUSIC is compared with NC-MUSIC
based on SOS [4] and NC-MUSIC based on FOC [15]. Let M = 5, N = 4, d = λ/2, and the number
of elements is N + M − 1 = 8. So we employ an 8-element uniform linear array for the other two
algorithms. We fix the search interval at 0.1◦ for the two groups of experiments and assume that all

Figure 2. Spatial spectrums of three methods with SNR = 5dB for [θ1, θ2, θ3] = [50◦, 60◦, 70◦].
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the incident signals have the biggest non-circularity. Define the root-mean-square error (RMSE) of the
angle estimation as

RMSE =

√√√√ 1

KJ

J∑
i=1

K∑
k=1

(
θ̂kj − θk

)2
(20)

where J = 200, and θ̂kj is the estimation of the kth signal in the jth Monte Carlo trial.

Figure 3. Spatial spectrums of three methods with SNR = 0dB for [θ1, θ2, θ3] = [50◦, 60◦, 70◦].

Figure 4. Spatial spectrums of three methods with SNR = 0dB for [θ1, θ2, θ3] = [55◦, 60◦, 65◦].
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4.1. Experiment 1

In this experiment, we show the spatial spectrums of three NC-MUSIC algorithms. Received data by
500 snapshots are used to estimate the covariance matrix and FOC matrix. Firstly, we consider the
condition that three signals are from the directions [50◦, 60◦, 70◦]. Fig. 2 shows the spatial spectrums
of three NC-MUSIC algorithms with 5 dB SNR. Fig. 3 shows the comparison of spatial spectrums of
three NC-MUSIC algorithms with SNR being changed into 0 dB. Then, we consider the condition that
three signals are from the directions [55◦, 60◦, 65◦]. The spatial spectrums of three algorithms with 0 dB
SNR are depicted in Fig. 4. The results shown in the three figures reflect that the proposed method
can distinguish the three angles clearly under three situations. However, the other two methods only
can distinguish the three angles under the first situation.

Figure 5. RMSEs of DOA estimates versus SNR.

Figure 6. RMSEs of DOA estimates versus snapshots.
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4.2. Experiment 2

In the second experiment, we compare the estimation accuracy of three NC-MUSIC algorithms. Three
signals are located at the directions [50◦, 60◦, 70◦]. Firstly, the number of snapshots is fixed at 500 with
the SNR changing from −5 dB to 10 dB. The RMSEs versus SNR are described in Fig. 5. Then, the
SNR is fixed at 5 dB with the number of snapshots changing from 100 to 600. The RMSEs of three
methods with regard to snapshots are displayed in Fig. 6. From Fig. 5 and Fig. 6, we can know that
the estimation accuracy of proposed algorithm is better than the other two algorithms, particularly for
the lower SNR and snapshots scene.

5. CONCLUSION

In this paper, we have presented a FOC-based NC-MUSIC algorithm for the DOA estimation of non-
circular signals by using nested array. The process of constructing FOC matrix is described in detail.
The proposed algorithm shows better angular resolution and precision than some classical NC-MUSIC
algorithms due to the extension of array aperture, especially in low SNR and snapshots scene.
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