Vol. 85
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-02
Receiver Coil Position Selection through Magnetic Field Coupling of a WPT System Used for Powering Multiple Electronic Devices
By
Progress In Electromagnetics Research M, Vol. 85, 165-173, 2019
Abstract
A wireless power transfer system based on magnetic resonant coupling (MRC) is preferred in many applications as it provides good balance between power transfer efficiency and physical separation distance. However, wireless power transfer to multiple loads through magnetic resonance coupling demands time due to the noteworthy advancement in consumer portable electronic devices. However, operating multiple loads corresponding to their optimum power level is a major concern which mostly depends on the position of the receiving coils with respect to the transmitting coil. This article presents an experimental investigation to find the best suited position of the multiple receiving coils corresponding to a spirally configured transmitting coil for powering multiple loads at their optimal power level. Through this technique multiple electronic devices can be powered up not only in one direction but also in both directions with their optimal power level. The findings will greatly assist the design of a resonant wireless power transfer system for powering multiple loads.
Citation
Siddharth Sahany, Sushree Sangita Biswal, Durga Prasanna Kar, Asru Abhijit Pattnaik, and Satyanarayan Bhuyan, "Receiver Coil Position Selection through Magnetic Field Coupling of a WPT System Used for Powering Multiple Electronic Devices," Progress In Electromagnetics Research M, Vol. 85, 165-173, 2019.
doi:10.2528/PIERM19071902
References

1. Pedder, D. A. G., A. D. Brown, and J. A. Skinner, "A contactless electrical energy transmission system," IEEE Transactions on Industrial Electronics, Vol. 46, 23-30, 1999.
doi:10.1109/41.744372

2. Kim, C.-G., D.-H. Seo, J.-S. You, J.-H. Park, and B. H. Cho, "Design of a contactless battery charger for cellular phone," IEEE Transactions on Industrial Electronics, Vol. 48, 1238-1247, 2001.
doi:10.1109/41.969404

3. Covic, G. A. and J. T. Boys, "Modern trends in inductive power transfer for transport applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 1, 28-41, 2013.
doi:10.1109/JESTPE.2013.2264473

4. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 1, 337-346, 2012.
doi:10.1002/wene.43

5. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254

6. Ho, S. L., J. Wang, W. Fu, and M. Sun, "A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging," IEEE Transaction on Magnetics, Vol. 47, 1522-1525, 2011.
doi:10.1109/TMAG.2010.2091495

7. Kar, D. P., P. P. Nayak, and S. Bhuyan, "Automatic frequency tuning wireless charging system for enhancement of efficiency," Electronics Letters, Vol. 50, No. 24, 1868-1870, 2014.
doi:10.1049/el.2014.2962

8. Kar, D. P., S. S. Biswal, P. K. Sahoo, P. P. Nayak, and S. Bhuyan, "Selection of maximum power transfer region for resonant inductively coupled wireless charging system," AEU - International Journal of Electronics and Communications, Vol. 84, 84-92, 2018.
doi:10.1016/j.aeue.2017.11.023

9. Hui, S. Y. R. and W. W. C. Ho, "A new generation of universal contactless battery charging platform for portable consumer electronic equipment," IEEE Transactions on Power Electronics, Vol. 20, 620-627, 2005.
doi:10.1109/TPEL.2005.846550

10. Parise, M., V. Tamburrelli, and G. Antonini, "Mutual impedance of thin-wire circular loops in near-surface applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, 558-563, 2019.
doi:10.1109/TEMC.2018.2816030

11. Orekan, T., P. Zhang, and C. Shih, "Analysis, design, and maximum power-efficiency tracking for undersea wireless power transfer," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 2, 843-854, 2018.
doi:10.1109/JESTPE.2017.2735964

12. RamRakhyani, A. K., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Bio. Circuits and Systems, Vol. 5, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782

13. Bhuyan, S., S. K. Panda, K. Sivananda, and R. Kumar, "A compact resonace-based wireless energy transfer system for implanted electronic devices," International Conference on Energy, Automation and Signal, 1-3, 2011.

14. Kar, D. P., P. P. Nayak, and S. Bhuyan, "Bi-directional magnetic resonance based wireless power transfer for electronic devices," Applied Physics Letters, Vol. 107, No. 13, 3901, 2015.
doi:10.1063/1.4931940

15. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, 2009.
doi:10.1109/TPEL.2009.2017195

16. Sahany, S., S. S. Biswal, D. P. Kar, P. K. Sahoo, and S. Bhuyan, "Impact of functioning parameters on the wireless power transfer system used for electric vehicle charging," Progress In Electromagnetics Research M, Vol. 79, 187-197, 2019.
doi:10.2528/PIERM18092610

17. Low, Z. N., J. J. Casanova, and J. Lin, "A loosely coupled planar wireless power transfer system supporting multiple receivers," Advances in Power Electronics, Vol. 2010, Article ID 546529, 13 pages, 2010.

18. Ahn, D. and S. Hong, "Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, No. 7, 2602-2613, 2013.
doi:10.1109/TIE.2012.2196902

19. Zhang, Y., T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, "Selective wireless power transfer to multiple loads using receivers of di®erent resonant frequencies," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6001-6005, 2015.
doi:10.1109/TPEL.2014.2347966

20. Fu, M., T. Zhang, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 3, 801-812, 2015.
doi:10.1109/TMTT.2015.2398422

21. Kar, D. P., P. P. Nayak, S. Bhuyan, and S. K. Panda, "Study of resonance based wireless electric vehicle charging system in close proximity to metallic objects," Progress In Electromagnetic Research M, Vol. 37, 183-189, 2014.
doi:10.2528/PIERM14070503

22. Choi, J. and C. H. Seo, "Analysis on transmission efficiency of wireless energy transmission resonator based on magnetic resonance," Progress In Electromagnetics Research M, Vol. 19, 221-237, 2011.
doi:10.2528/PIERM11050903