Vol. 85
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-14
A Compact Switchable and Tunable Bandpass Filter
By
Progress In Electromagnetics Research M, Vol. 85, 71-81, 2019
Abstract
In this paper, an integrated switchable and tunable bandpass filter is designed, simulated, and fabricated. This integrated bandpass filter is able to switch as well as tune in the ultra-wideband (UWB) as well as 2.4 GHz band. At first, a UWB bandpass filter is developed which consists of two bent shorted quarter-wavelength stubs and a connecting half-wavelength stub. Subsequently, a 2.4 GHz bandpass filter is realized by connecting another half-wavelength stub on top of the UWB filter. RF pin-diodes are used for switching the bands between UWB and 2.4 GHz bandpass filter. The switchable bandpass filter converts into a tunable filter by changing the inductance or the length of shorted stubs through the pin diodes. A detailed parametric analysis is done for calculating different stubs lengths of the UWB as well 2.4 GHz bandpass filter. The simulation results show a high rejection level of >40 dB at the lower frequency and a low insertion loss of 0.8 dB in the passband for UWB filter. For 2.4 GHz bandpass filter, the simulation results show an insertion loss of 0.42 dB and a 3 dB bandwidth of 796 MHz. The filter is fabricated on a Rogers 4003 substrate, and the measurement results of the switchable filter in the UWB band show an insertion loss of 2.1 dB and a 3 dB bandwidth of 7 GHz. In the case of 2.4 GHz bandpass filter, the insertion loss is 0.78 dB.
Citation
Muhammad Faeyz Karim, and Mohammed Yakoob Siyal, "A Compact Switchable and Tunable Bandpass Filter," Progress In Electromagnetics Research M, Vol. 85, 71-81, 2019.
doi:10.2528/PIERM19071804
References

1. Tamjani, A. A., L. Dussopt, and G. M. Rebeiz, "Miniature and tunable filter using MEMS," IEEE Trans. Microwave Theory Tech., Vol. 51, 1878-1885, 2003.
doi:10.1109/TMTT.2003.814317

2. Karim, M. F., A. Q. Liu, A. Arokiaswami, and A. B. Yu, "A tunable bandstop filter via the capacitance change of micromachined switches," Journal of Micromechanics & Microengineering, Vol. 16, 851-861, 2006.
doi:10.1088/0960-1317/16/4/023

3. Karim, M. F., Y.-X. Guo, Z. N. Chen, and L. C. Ong, "Miniaturized reconfigurable and switchable filter from UWB to 2.4 GHz WLAN using PIN diodes," International Microwave Symposium, IEEE Microwave Theory and Techniques Society (MTT-S), 509-512, Boston, USA, 2009.

4. Brown, A. R. and G. M. Rebeiz, "A varactor tuned RF filter," IEEE Trans. Microwave Theory Tech., Vol. 48, 1157-1160, 2000.
doi:10.1109/22.848501

5. Pal, B. and S. Dwari, "Microstrip dual-band bandpass filter with independently tunable passbands using varactor-tuned stub loaded resonators," AEU - International Journal of Electronics and Communications, Vol. 73, 105-109, March 2017.
doi:10.1016/j.aeue.2017.01.004

6. Supavarasuwat, P., M. Kumngern, S. Sangyaem, W. Jaikla, and F. Khateb, "Cascadable independently and electronically tunable voltage-mode universal filter with grounded passive components," AEU - International Journal of Electronics and Communications, Vol. 84, 290-299, February 2018.
doi:10.1016/j.aeue.2017.12.002

7. Fourn, E., A. Pothier, C. Champeaux, P. Blondy, et al. "MEMS switchable interdigital coplanar filter," IEEE Trans. Microwave Theory Tech., Vol. 51, 320-324, 2003.
doi:10.1109/TMTT.2002.806517

8. Kraus, G. M., C. Goldsmith, C. D. Nordquist, et al. "A widely tunable RF MEMS end coupled filter," IEEE MTTS Int. Microwave Symp. Dig., 429-432, 2004.

9. Karim, M. F., A. Q. Liu, A. Arokiaswami, and A. B. Yu, "A reconfigurable micromachined switching filter using periodic structures," IEEE Trans. Microwave Theory Tech., Vol. 55, 1154-1162, 2007.
doi:10.1109/TMTT.2007.897670

10. Potrebić, M., D. Tošić, and A. Plazinić, "Reconfigurable multilayer dual-mode bandpass filter based on memristive switch," AEU - International Journal of Electronics and Communications, Vol. 97, 290-298, December 2018.
doi:10.1016/j.aeue.2018.10.032

11. Ishida, H. and K. Araki, "Design and analysis of UWB bandpass filter with ring filter," IEEE MTT-S Int. Dig., 1307-1310, 2004.

12. Wong, S. W. and L. Zhu, "EBG-embedded multiple mode resonator for UWB bandpass filter with improve upper stop band performance," IEEE Wireless Component Lett., Vol. 17, 421-423, 2007.
doi:10.1109/LMWC.2007.897788

13. Gozhenko, V., A. Przadka, and P. Hagn, "Multilayer LTCC bandpass filter design," IEEE 37th European Microwave Conference, 540-543, 2007.

14. Matsuge, K., S. Him, M. Ishida, T. Kitaham, and T. Yamamoto, "Full RF module with embedded filters for 2.4 GHz and 5 GHz dual band WLAN applications," IEEE MTT-S Int. Dig., 629-632, 2004.

15. Chan, K. Y., S. Fouladi, R. Ramer, and R. Mansour, "RF MEMS switchable interdigital bandpass filter," IEEE Wireless Component Lett., Vol. 22, 44-46, 2012.
doi:10.1109/LMWC.2011.2176926

16. Brito, Z., I. Llamas-Garro, G. Navarro-Munoz, J. Perruisseau-Carrier, L. Pradell, F. Giacomozzi, and S. Colpo, "Precise frequency and bandwidth control of switchable microstrip bandpass filters using diode and microelectro-mechanical system technologies," IET Microwaves, Antennas & Propagation, Vol. 6, 713-719, 2012.
doi:10.1049/iet-map.2012.0077

17. Lee, J., E. J. Naglich, H. H. Sigmarsson, et al. "New bandstop filter circuit topology and its application to design of a bandstop-to-bandpass switchable filter," IEEE Trans. Microwave Theory Tech., Vol. 61, 1114-1123, 2013.
doi:10.1109/TMTT.2012.2237036