Vol. 85
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-29
Wind Turbine Clutter Suppression for Weather Radars by Improved Range-Doppler Domain Joint Interpolation in Low SNR Environments
By
Progress In Electromagnetics Research M, Vol. 85, 145-154, 2019
Abstract
Due to the exponential growth of the number and scale of wind farms, wind turbine clutter has become the main factor that limits the detection performance of weather radar systems. As a consequence of the rapid rotation of wind turbine blades, conventional ground clutter filters are ineffective at removing wind turbine clutter (WTC). An improved range-Doppler joint interpolation for WTC suppression is proposed in this paper. The proposed algorithm firstly exploits the frequency-domain transformation technique to improve the signal-to-noise ratio (SNR), so that the interpolation algorithm can recover the weather signal in the case of low SNR. Then, the weather signals recovered by one-dimensional interpolation in range domain and Doppler domain are calculated, respectively, and the two-dimensional joint interpolation is performed based on two-dimensional weighted coefficients calculated via a least mean squares criterion. Theoretical analysis and simulation results show that the proposed algorithm effectively suppresses the wind turbine clutter and significantly reduces the bias in radial velocity estimation caused by WTC contamination in low SNR environments.
Citation
Xu Yao, Mingwei Shen, Di Wu, and Dai-Yin Zhu, "Wind Turbine Clutter Suppression for Weather Radars by Improved Range-Doppler Domain Joint Interpolation in Low SNR Environments," Progress In Electromagnetics Research M, Vol. 85, 145-154, 2019.
doi:10.2528/PIERM19070701
References

1. Gallardo-Hernando, B. and J. Munoz-Ferreras, "Wind turbine clutter observations and theoretical validation for meteorological radar applications," IET Radar Sonar Nav., Vol. 5, No. 2, 111-117, 2011.
doi:10.1049/iet-rsn.2009.0296

2. Isom, B. M., R. D. Palmer, G. S. Secrest, et al. "Detailed observations of wind turbine clutter with scanning weather radars," J. Atmos. Ocean. Tech., Vol. 26, No. 5, 894-910, 2009.
doi:10.1175/2008JTECHA1136.1

3. Liu, Y. and J. He, "A study of ground clutter suppression with a regression filter," International Conference on Signal Processing, IEEE, 2007.

4. Barnes, S. L., "Comments on `Use of multiquadric interpolation for meteorological objective analysis'," Mon. Wea. Rev., Vol. 123, No. 7, 2255-2256, 1995.
doi:10.1175/1520-0493(1995)123<2255:COOMIF>2.0.CO;2

5. Golbon-Haghighi, M. H., "Ground clutter detection for weather radar using phase fluctuation index," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 5, 2889-2895, 2018.
doi:10.1109/TGRS.2018.2878378

6. Uysal, F. and I. Selesnick, "Mitigation of wind turbine clutter for weather radar by signal separation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 5, 2925-2934, 2016.
doi:10.1109/TGRS.2015.2508380

7. Gallardo-Hernando, B. and F. Perez-Martinez, "Detection and mitigation of wind turbine clutter in C-band meteorological radar," IET Radar Sonar & Navig, Vol. 4, No. 4, 520-527, 2010.
doi:10.1049/iet-rsn.2008.0212

8. Hood, K., S. Torres, and R. Palmer, "Automatic detection of wind turbine clutter for weather radars," J. Atmos. Ocean. Tech., Vol. 27, No. 11, 1868-1880, 2010.
doi:10.1175/2010JTECHA1437.1

9. Danoon, L. R. and A. K. Brown, "Modeling methodology for computing the radar cross section and Doppler signature of wind farms," IEEE Trans. on Antennas & Propagation, Vol. 61, No. 10, 5166-5174, 2013.
doi:10.1109/TAP.2013.2272454

10. Lok, Y. F., A. Palevsky, and J. Wang, "Simulation of radar signal on wind turbine," IEEE Aerospace & Electronic Systems Magazine, Vol. 26, No. 8, 39-42, 2011.
doi:10.1109/MAES.2011.5980608

11. Nuss, W. A. and D. W. Titley, "Use of multiquadric interpolation for meteorological objective analysis," Mon. Wea. Rev., Vol. 122, No. 7, 1611-1631, 1994.
doi:10.1175/1520-0493(1994)122<1611:UOMIFM>2.0.CO;2

12. Yuan, Z., et al. "Phase difference measurement of undersampled sinusoidal signals based on coherent accumulation and DFT," Geoscience & Remote Sensing Symposium, IEEE, 2016.

13. Hardy, R. L., "Multiquadric equations of topography and other irregular surfaces," J. Geophys. Res., Vol. 76, No. 8, 1905-1911, 1971.
doi:10.1029/JB076i008p01905

14. Franke, R., "Scattered data interpolation: Tests of some methods," Math. Comput., Vol. 38, No. 157, 181-200, 1982.

15. Vidal, L. and W. Stephen, "C-band dual-polarization radar observation of a massive volcanic eruption in South America," IEEE J. Sel. Topic Appl. Earth Observ., Vol. 10, No. 3, 960-974, 2017.
doi:10.1109/JSTARS.2016.2640227