1. Pourya, P., A. Ghanbarzadeh, M. Wilson, et al. "An experimental and analytical study of the effect of water and its tribochemistry on the tribocorrosive wear of boundary lubricated systems with ZDDP-containing oil," Wear, Vol. 358-359, No. 15, 23-31, 2016.
2. Harika, E., J. Bouyer, M. Fillon, et al. "Effects of water contamination of lubricants on hydrodynamic lubrication: Rheological and thermal modeling," Journal of Tribology - Transactions of the ASME, Vol. 135, No. 4, 041707, 2013.
doi:10.1115/1.4024812
3. Engelhardt, C., J. Witzig, T. Tobie, et al. "Influence of water contamination in gear lubricants on wear and micro-pitting performance of case carburized gears," Industrial Lubrication and Tribology, Vol. 69, No. 4, 612-619, 2017.
doi:10.1108/ILT-07-2016-0152
4. Larsson, W., J. Jalbert, R. Gilbert, et al. "Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation," Analytical Chemistry, Vol. 75, No. 6, 1227-1232, 2003.
doi:10.1021/ac026229+
5. Mao, Z. B., J. X. Zhao, W. P. Xuan, et al. "Distilling determination of water content in hydraulic oil with a ZnO/glass surface acoustic wave device," Microsystem Technologies, Vol. 23, No. 6, 1841-1845, 2017.
doi:10.1007/s00542-016-2922-3
6. Holland, T., A. M. Abdul-Munaim, D. G. Watson, et al. "Importance of emulsification in calibrating infrared spectroscopes for analyzing water contamination in used or in-service engine oil," Lubricants, Vol. 6, No. 2, 35, 2018.
doi:10.3390/lubricants6020035
7. Landy, N. I., S. Sajuyigbe, J. J. Mock, et al. "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
8. Hu, C. G., Z. Y. Zhao, X. N. Chen, et al. "Realizing near-perfect absorption at visible frequencies," Optics Express, Vol. 17, No. 13, 11039-11044, 2011.
doi:10.1364/OE.17.011039
9. Wen, Q. Y., H. W. Zhang, Y. S. Xie, et al. "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Applied Physics Letters, Vol. 95, No. 24, 1111, 2009.
doi:10.1063/1.3276072
10. Gu, C., S. B. Qu, Z. B. Pei, et al. "A metamaterial absorber with direction-selective and polarisation-insensitive properties," Chinese Physics B, Vol. 20, No. 3, 433-437, 2011.
doi:10.1088/1674-1056/20/3/037801
11. Agarwal, S. and Y. K. Prajapati, "Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region," Applied Physics A, Vol. 122, No. 6, 561, 2016.
doi:10.1007/s00339-016-0078-8
12. Dincer, F., O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime," Progress In Electromagnetics Research, Vol. 144, 93-101, 2014.
doi:10.2528/PIER13111404
13. Mohammad, R. S., A. S Ramezanali, G. Hadi, et al. "Design and fabrication of a metamaterial absorber in the microwave range," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1748-1752, 2014.
doi:10.1002/mop.28437
14. Akgol, O., M. Bagmanci, M. Karaaslan, et al. "Broad band MA-based on three-type resonator having resistor for microwave energy harvesting," Journal of Microwave Power and Electromagnetic Energy, Vol. 51, No. 2, 134-149, 2017.
doi:10.1080/08327823.2017.1321928
15. Alkurt, F. O., O. Altintas, M. Bakir, et al. "Octagonal shaped metamaterial absorber based energy harvester," Materials Science, Vol. 24, No. 3, 253-259, 2018.
doi:10.5755/j01.ms.24.3.18625
16. Agarwal, S. and Y. K. Prajapati, "Multifunctional metamaterial surface for absorbing and sensing applications," Optics Communications, Vol. 439, 304-307, 2019.
doi:10.1016/j.optcom.2019.01.020
17. Jeong, H. J. and L. Sungjoon, "A stretchable radio-frequency strain sensor using screen printing technology," Sensors, Vol. 16, No. 11, 1839, 2016.
doi:10.3390/s16111839
18. Bakir, M., M. Karaaslan, F. Dincer, et al. "Perfect metamaterial absorber-based energy harvesting and sensor applications in the industrial, scientific, and medical band," Optical Engineering, Vol. 54, No. 9, 097102, 2015.
doi:10.1117/1.OE.54.9.097102
19. Tang, J. Y., Z. Y. Xiao, and K. K. Xu, "Broadband ultrathin absorber and sensing application based on hybrid materials in infrared region," Plasmonics, Vol. 12, No. 4, 91-98, 2016.
20. Ozturk, M., U. K. Sevim, O. Akgol, et al. "An electromagnetic non-destructive approach to determine dispersion and orientation of fiber reinforced concretes," Measurement, Vol. 138, 356-367, 2019.
doi:10.1016/j.measurement.2019.01.039
21. Abdulkarim, Y. I., L. W. Deng, O. Altıntaş, et al. "Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113593, 2019.
doi:10.1016/j.physe.2019.113593
22. Altintas, O., M. Aksoy, E. Unal, et al. "Artificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricant," Measurement, Vol. 145, 678-686, 2019.
doi:10.1016/j.measurement.2019.05.087
23. Altintas, O., M. Aksoy, E. Unal, et al. "Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator," Journal of the Electrochemical Society, Vol. 166, No. 6, B482-B488, 2019.
doi:10.1149/2.1101906jes
24. Tumkaya, M. A., F. Dincer, M. Karaaslan, et al. "Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples," Journal of Electronic Materials, Vol. 46, No. 8, 4955-4962, 2017.
doi:10.1007/s11664-017-5485-x
25. Liu, J. J., L. L. Fan, J. F. Ku, et al. "Absorber: A novel terahertz sensor in the application of substance identification," Optical and Quantum Electronics, Vol. 48, No. 2, 80, 2016.
doi:10.1007/s11082-015-0361-5
26. Ling, K., M. Yoo, W. J. Su, et al. "Microfluidic tunable inkjet-printed metamaterial absorber on paper," Optics Express, Vol. 23, No. 1, 110-120, 2015.
doi:10.1364/OE.23.000110
27. Wei, Z. H., J. Huang, J. Li, et al. "A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids," Sensors, Vol. 18, No. 11, 4005, 2018.
doi:10.3390/s18114005
28. Robiatun, R. A., F. J. Tovar-Lopez, T. Baum, et al. "Meta-atom microfluidic sensor for measurement of dielectric properties of liquids," Journal of Applied Physics, Vol. 121, No. 9, 094506, 2017.
doi:10.1063/1.4978012
29. Yoo, M., H. K. Kim, and S. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors and Actuators B: Chemical, Vol. 222, 173-180, 2016.
doi:10.1016/j.snb.2015.08.074
30. Alici, K. B. and E. A. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics and Nanostructures - Fundamentals and Applications, Vol. 6, No. 1, 102-107, 2008.
doi:10.1016/j.photonics.2008.01.001
31. Xie, C. F. and K. Q. Rao, Electromagnetic Field and Electromagnetic Wave, 3rd Ed., Higher Education Press, 1999.