Vol. 84
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-20
An Improved Algorithm for Deducing Complex Permittivity of Thin Dielectric Samples with the Transmission/Reflection Method
By
Progress In Electromagnetics Research M, Vol. 84, 1-9, 2019
Abstract
Transmission/reflection method is widely used in microwave engineering for determining dielectric properties of materials, and significant uncertainty will arise in the results if the thickness of the samples is small. In this paper, we propose animproved algorithm for deducing complex permittivity of thin dielectric samples with the transmission/reflection method. With the proposed algorithm, the real and imaginary parts of the complex permittivity will be treated separately, and two independent weighting factors, βre and βim, will be used to minimize the uncertainty in both parts ofthe complex permittivity. Numerical calculations as well as experimental measurements on undoped and boron-doped diamond films were conducted within the frequency range of 18.5-26.5 GHz to demonstrate the effectiveness of the algorithm. It is verified that among the various iterative algorithms which could be used to derive complex permittivity, the proposed algorithm is the most advantageous inreducing uncertaintieswhen thin dielectric samples are dealt with.
Citation
Minghui Ding, Yanqing Liu, Xinru Lu, Yifeng Li, and Weizhong Tang, "An Improved Algorithm for Deducing Complex Permittivity of Thin Dielectric Samples with the Transmission/Reflection Method," Progress In Electromagnetics Research M, Vol. 84, 1-9, 2019.
doi:10.2528/PIERM19061802
References

1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, Ltd, 2004.
doi:10.1002/0470020466

2. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

3. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

4. Kim, S. and J. R. Guerrieri, "Low-loss complex permittivity and permeability determination in transmission/reflection measurements with time-domain smoothing," Progress In Electromagnetics Research M, Vol. 44, 69-79, 2015.
doi:10.2528/PIERM15073010

5. Hasar, U. C., J. J. Barroso, C. Sabah, and Y. Kaya, "Resolving phase ambiguity in the inverse problem of reflection-only measurement methods," Progress In Electromagnetics Research, Vol. 129, 405-420, 2012.
doi:10.2528/PIER12052311

6. Kim, S. and J. Baker-Jarvis, "An approximate approach to determining the permittivity and permeability near λ/2 resonances in transmission/reflection measurements," Progress In Electromagnetics Research B, Vol. 58, 95-109, 2014.
doi:10.2528/PIERB13121308

7. Hasar, U. C., "Self-calibrating transmission-reflection technique for constitutive parameters retrieval of materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 1081-1089, 2018.
doi:10.1109/TMTT.2017.2756964

8. Hasar, U. C., "Thickness-invariant complex permittivity retrieval from calibration-independent measurements," IEEE Microwave and Wireless Components Letters, Vol. 27, 201-203, 2017.
doi:10.1109/LMWC.2016.2647000

9. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

10. Kato, Y., M. Horibe, M. Ameya, S. Kurokawa, and Y. Shimada, "New uncertainty analysis for permittivity measurements using the transmission/reflection method," IEEE Transactions on Instrumentation and Measurement, Vol. 64, 1748-1753, 2015.
doi:10.1109/TIM.2015.2401231

11. Hasar, U. C., Y. Kaya, J. J. Barroso, and M. Ertugrul, "Determination of reference-plane invariant, thickness-independent, and broadband constitutive parameters of thin materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 2313-2321, 2015.
doi:10.1109/TMTT.2015.2431685

12. Kato, Y. and M. Horibe, "Improvement of transmission/reflection method for permittivity measurement using long fixtures with time-domain," IEEE Transactions on Instrumentation and Measurement, Vol. 66, 1201-1207, 2017.
doi:10.1109/TIM.2017.2653598

13. Barry, W., "A broad-band, automated, stripline technique for the simultaneous measurement," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, 80-84, 1986.
doi:10.1109/TMTT.1986.1133283

14. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurement,", NIST Project, National Institute of Standards and Technology, Colorado, 1990.

15. Vector network analyzer uncertainty calculator, Keysight Software, version: 5.0.6.0, Jul. 2017.

16. Yamada, H., A. Meier, F. Mazzocchi, S. Schreck, and T. Scherer, "Dielectric properties of single crystalline diamond wafers with large area at microwave wavelengths," Diamond and Related Materials, Vol. 58, 1-4, 2015.
doi:10.1016/j.diamond.2015.05.004

17. Thumm, M., "MPACVD-diamond windows for high-power and long-pulse millimeter wave transmission," Diamond and Related Materials, Vol. 10, 1692-1699, 2001.
doi:10.1016/S0925-9635(01)00397-1

18. Heidinger, R., G. Dammertz, A. Meier, and M. K. Thumm, "CVD diamond windows studied with low- and high-power millimeter waves," IEEE Transactions on Plasma Science, Vol. 30, 800-807, 2002.
doi:10.1109/TPS.2002.1158309

19. Liu, Y. Q., M. H. Ding, J. J. Su, H. Ren, X. R. Lu, and W. Z. Tang, "An investigation on dielectric properties of diamond films in the range of K and Ka band," Diamond and Related Materials, Vol. 73, 114-120, 2017.
doi:10.1016/j.diamond.2016.08.007

20. Hasar, U. C., "Self-calibrating transmission-reflection technique for constitutive parameters retrieval of materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 1081-1089, 2018.
doi:10.1109/TMTT.2017.2756964

21. Ding, M., Y. Liu, X. Lu, Y. Li, and W. Tang, "Boron doped diamond films: A microwave attenuation material with high thermal conductivity," Applied Physics Letters, Vol. 114, 162901, 2019.
doi:10.1063/1.5083079