
Progress In Electromagnetics Research M, Vol. 84, 1–9, 2019

An Improved Algorithm for Deducing Complex Permittivity of Thin
Dielectric Samples with the Transmission/Reflection Method
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Abstract—Transmission/reflection method is widely used in microwave engineering for determining
dielectric properties of materials, and significant uncertainty will arise in the results if the thickness of
the samples is small. In this paper, we propose an improved algorithm for deducing complex permittivity
of thin dielectric samples with the transmission/reflection method. With the proposed algorithm, the
real and imaginary parts of the complex permittivity will be treated separately, and two independent
weighting factors, βre and βim, will be used to minimize the uncertainty in both parts of the complex
permittivity. Numerical calculations as well as experimental measurements on undoped and boron-
doped diamond films were conducted within the frequency range of 18.5–26.5 GHz to demonstrate the
effectiveness of the algorithm. It is verified that among the various iterative algorithms which could
be used to derive complex permittivity, the proposed algorithm is the most advantageous in reducing
uncertainties when thin dielectric samples are dealt with.

1. INTRODUCTION

Determination of a material’s dielectric property is a prerequisite for application of the material in the
field of microwave engineering. For this reason, many measuring techniques have been developed which
could generally be divided into two groups, i.e., resonant and non-resonant methods [1]. Among the
various techniques, the transmission/reflection (T/R) method is widely used because of its simplicity
in equipment and capability in wideband measurements.

In the T/R measurement, a sample is inserted into either a waveguide, a coaxial line or a
stripling, and complex permittivity of the sample will be deduced from scattering parameters (S-
parameters) measured at the two ends of the measurement fixture. This method was first proposed
by Nicolson and Ross [2], and Weir [3], so was given the name NRW algorithm. During the last
decades, progressive improvements have been made on the T/R method [4–12]. Baker-Jarvis et al. [9]
proposed an iterative approach to eliminate the ill-behavior of the original NRW algorithm. They
showed that by incorporating a weighting factor β into the algorithm, the uncertainty of the complex
permittivity derived from the algorithm could be effectively reduced. Later on, Kato et al. [10] proposed
an alternative approach in selecting the weighting factor, in order to further minimize the uncertainty
in determining the complex permittivity. However, by referring to the results shown in [10], it can be
seen that the uncertainty of the imaginary part of the complex permittivity determined in such a way
may not necessarily be decreased, though uncertainty in the real part of the result may be reduced.

Generally speaking, even with an iterative algorithm, significant uncertainty will arise in deriving
the complex permittivity, if the thickness of the sample is small. In this paper, we propose a further
improvement on the iterative algorithms developed by Baker-Jarvis et al. [9] and Kato et al. [10]. In
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our approach, the real and imaginary parts of the complex permittivity will be treated separately, and
two weighting factors, βre and βim, will be employed in the iterative calculation, so as to decrease the
uncertainty in both the real and imaginary parts of the complex permittivity. Uncertainty analysis will
be conducted by numerical calculations, showing that with the proposed algorithm both the real and
imaginary parts of the complex permittivity of thin samples may be more accurately determined than
those derived using alternative algorithms. Experimental measurements are carried out on thin undoped
and boron-doped diamond films to prove the effectiveness of the improved algorithm in measuring
complex permittivity of thin dielectric samples.

2. THEORETICAL BACKGROUND

Figure 1 shows a schematic of the T/R method in measuring dielectric properties of a sample within a
rectangle waveguide. The situations with a coaxial line [9] or a stripline [13] as measurement fixtures
may be similarly treated. In the figure, L is the thickness of the sample with a relative complex
permittivity εr and relative complex permeability μr; La is the length of the waveguide fixture; L1

and L2 are the distances between the sample surfaces and the relevant reference planes (port 1 and 2),
respectively. S-parameters (Sij, i, j = 1, 2) are measured at ports 1 and 2 by using a vector network
analyzer connected to the waveguide fixture.

Figure 1. Schematic of the T/R method with a rectangular waveguide as the measurement fixture.

One of the most widely used equations derived by Baker-Jarvis et al. [9] for determining the complex
permittivity εr of the sample is of the form:

S12S21 − S11S22 =
z2−Γ2

1 − Γ2z2
exp [2γ0 (La − L)] (1)

where Γ = (γ0 − γ)/(γ0 + γ) and z = exp(−γL) are the reflection coefficient and propagation factor,
and γ0 and γ are the propagation constants of microwave in air and in the sample, respectively. The
latter two parameters are related to the complex permittivity εr and complex permeability μr of the
sample by relations shown below:

γ0=j

√
(ω/c)2 − (2π/λc)

2, γ =j

√
(ω/c)2 εrμr− (2π/λc)

2 (2)

where c is the speed of light in vacuum and ω the microwave angular frequency, and λc the cutoff
wavelength of the waveguide. In the following, we deal only with the situation in which the sample is
made of a nonmagnetic material, thus we have μr = 1

In order to improve accuracy of the calculation, another equation containing a weighting factor β
may be used [9]:

1
2
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Application of this equation requires that the condition L1 = 0 is satisfied.
Both Eqs. (1) and (3) are complex functions from which complex permittivity of the sample is to

be deduced. We see from these equations that S-parameters, La, L, and their uncertainties would affect
accuracy of the derived complex permittivity through their uncertainty transfer coefficients (UTCs,
denoted as partial derivatives in [9]). Air gaps between the sample and measurement fixture walls may
also contribute to the uncertainties of the result. But the latter problem has been thoroughly treated
in the literature [14], so in this paper this effect will no longer be discussed.

After rewriting Eq. (3) in the form of F (εr, L, La, S, β) = 0, UTCs between all variables may
be derived. For example, the UTC of the real part of the complex permittivity, ε′r, to one of the
S-parameters, S21, may be written as:

∂ε′r
∂ |S21| = Re

⎧⎪⎨
⎪⎩

1
2

exp [γ0 (La−L)] ejθ21

∂F/∂εr

⎫⎪⎬
⎪⎭ ,

∂ε′r
∂θ21

=j |S21| ∂ε′r
∂ |S21| (4)

where |S21| and θ21 are the amplitude and argument of scattering parameter S21. All other UTCs of
every parameter could be derived similarly. After all UTCs are obtained, uncertainties in the real and
imaginary parts of the complex permittivity may be expressed:

Δε′r =
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where i = {1, 2}, j = {1, 2}, and ε′′r is the imaginary part of the complex permittivity.
It is clear from Eq. (4) that any change in the weighting factor β would change relevant UTCs which

would affect overall uncertainties of the ultimate results. Therefore, the weighting factor β should be
optimally determined.

In [9], it is suggested that β is chosen as the ratio between the uncertainties of two S-parameters,
Δ|S21|/Δ|S11|. Choice of β in this way would decrease the overall uncertainty of the complex
permittivity by weighting heavily on the S-parameter with less uncertainty. However, Kato et al. [10]
pointed out that a so-determined β may not be optimal. They suggested that β is chosen to minimize
(Δε′r)2 + (Δε′′r )2 the sum of the squares of uncertainties in both the real and imaginary parts of the
complex permittivity. However, as we will show in the next section, choice of β in this way may not
necessarily mean that the uncertainties in both the real and imaginary parts of the complex permittivity
are decreased.

To circumvent the problem, in this paper we propose a further improvement on the choice of β. In
our approach, two distinct weighting factors, βre and βim, will be used separately to optimize the real
and imaginary parts of the complex permittivity. In other words, βre will be chosen to minimize Δε′r,
so does βim to minimize Δε′′r . Similar to the situation in [10], the uncertainties Δε′r and Δε′′r could be
derived as follows: (

Δε′r
)2 =

c1 + c2βre + c3β
2
re

c4 + c5βre + c6β2
re

(7)

(
Δε′′r

)2 =
c7 + c8βim + c9β

2
im

c10 + c11βim + c12β2
im

(8)

where c1, c12 are coefficients dependent on L, La, εr, S-parameters, and their uncertainties, but
independent of the weighting factors. Thus, two distinct weighting factors, βre and βim, may be
selected to minimize Δε′r and Δε′′r separately, and then these two weighting factors are used to derive
two complex permittivities, εr1 and εr2. Finally, a new complex permittivity, εr = ε′r1 − jε′′r2, will be
formed by combining the real and imaginary parts of the two permittivities. In such a way, uncertainties
in both parts of the complex permittivity may be minimized.
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3. NUMERICAL CALCULATIONS

Numerical calculation is made for a thin dielectric sample with a complex permittivity of εr = 2(1−j0.1).
Dimensions of the measurement are assumed as follows: L = 0.6 mm, La = 4.5 mm, and L1 = 0. The
frequency range is assumed in the K-band (18–26.5 GHz). Within this frequency range, the thickness
of the sample is comparatively small (less than 10% of the microwave wavelength in the sample), so
significant uncertainty will arise.

In the calculation, uncertainties in S-parameters are derived for an Agilent N5244a vector network
analyzer [15], and uncertainties in dimensions are assumed as ΔL = 0.01 mm and ΔLa = 0.02 mm,
respectively. Fig. 2 shows uncertainties calculated for the real and imaginary parts of the complex
permittivity together with weighting factors obtained by the different algorithms as a function of
frequency. In the following, these three algorithms based on using Eq. (3) will be designated as the
Baker-Jarvis method (βBJ ), Kato method (βBJ ), and proposed method, respectively. For the sake of
comparison, the algorithm by using Eq. (1) has also been included.

(a) (b)

(c)

Figure 2. Uncertainties in (a) the real and (b) imaginary part of the complex permittivity and (c) the
weighting factors vs frequency.

Figure 2(a) shows the uncertainty calculated for the real part of the complex permittivity. It
could be noticed immediately that over the entire K-band the uncertainty is the largest for the result
obtained from using Eq. (1) and the lowest obtained with the proposed method. On the other hand,
while the accuracy of the calculation is improved by using either the Kato or the Baker-Jarvis method as
compared with that obtained with Eq. (1), it is with the Kato method that the result is more accurate.
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The latter result is consistent with that obtained in the literature [10].
Figure 2(b) shows the uncertainty calculated for the imaginary part of the complex permittivity. It

is striking to see that the uncertainty obtained with the Kato method is higher than that with the Baker-
Jarvis method, consistent again with the result of the literature [10]. And among all the algorithms used
in the calculation, the proposed method results in the lowest uncertainty. This is because the method
separates the optimization process for the real and imaginary parts of the calculation, thus avoiding
their interference and improving accuracy of the results. It can also be seen from Fig. 2(b) that the
uncertainty in the imaginary part of the complex permittivity obtained with the Kato method is either
very close to or even higher than that derived by using Eq. (1) at high frequencies (> 25 GHz). This
proves that if the weighting factor in Eq. (3) is not properly selected, accuracy of the results will not
necessarily be improved, as compared with that obtainable with the conventional algorithm (Eq. (1)).

Figure 2(c) compares weighting factors obtained with the three different algorithms. It could be
seen that, firstly, the two weighting factors obtained with the proposed method are quite different, while
those obtained with the Kato and Baker-Jarvis methods are in between these two weighting factors.
Secondly, the weighting factor obtained with the Baker-Jarvis method is very close to βim, and this
is also reflected in the fact that the uncertainties in the imaginary part of the permittivity obtained
with both the Baker-Jarvis and the proposed method are close to each other. Since with the proposed
method, two weighting factors have been used to calculate the real and imaginary parts of the complex
permittivity, respectively, the uncertainties in both parts of the results may be simultaneously the
lowest.

4. A SIMPLE EXPLANATION OF THE PROPOSED ALGORITHM

Above, we have proposed that in using the iterative approach in solving Eq. (3), two weighting factors,
βre and βim, may be used separately to deduce the real and imaginary parts of the complex permittivity.
In the following, rationality of the proposed algorithm will be briefly discussed.

We firstly rewrite Eq. (3) in its general form as

F
(
ε′r, ε

′′
r , L, La, S, β

)
= 0 (9)

where the weighting factor β has been incorporated to improve the accuracy of the complex permittivity
caused by measurement uncertainties in dimensions and S-parameters. Thus, the uncertainties of the
real and imaginary parts of complex permittivity will all be β dependent (Eqs. (7) and (8)). Fig. 3
shows schematically the interrelationship between the uncertainties in the real and imaginary parts of

Figure 3. Curve of the uncertainties of the complex permittivity vs. β, with the dada taken from
Fig. 2 for a fixed frequency of 25 GHz.
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the permittivity and weighting factor β. The result has been calculated using the data taken from Fig. 2
for a frequency of 25 GHz.

Just as in Kato’s algorithm [10] in deducing the permittivity, we may impose the following
restriction (

Δε′r
)2 +

(
Δε′′r

)2 = min (10)

In such a procedure, a specific weighting factor βkato will be obtained. It can be seen from Fig. 3 that
Eq. (3) corresponds to the nearest distance of the curve to the origin. It could be noted from Fig. 3
that at this time both Δε′r and Δε′′r are not the minimum. Instead, another form of restriction may be
imposed, such as (

Δε′r
)2 = min (11)

This time, the permittivity will be deduced aiming to minimize the uncertainty in the real part of the
permittivity (with a new weighting factor βre), as indicated also in Fig. 3. It should be emphasized that
the thus obtained real part of the permittivity (together with its uncertainty) will be valid irrespective
of whether its imaginary counterpart will be explicitly used or not. This is because the thus deduced
real part of the permittivity (and its uncertainty) has been calculated using the basic equation (Eq. (9)).

Likewise, a similar restriction may be imposed in solving Eq. (9):(
Δε′′r

)2 = min (12)

aiming to minimize the uncertainty in the imaginary part of the permittivity. The result with the
weighting factor βim obtained is also indicated in Fig. 3. The thus obtained imaginary part of the
permittivity (with its uncertainty) will remain valid irrespective of whether its real counterpart will be
explicitly stated or not, since it has been calculated from the basic equation (Eq. (9)).

It could be imagined that in using the Baker-Jarvis’ algorithm [9] the result derived for the complex
permittivity (together with a weighting factor βBJ) will also be located somewhere along the curve shown
in Fig. 3. However, according to the former discussions the algorithm has been unable to minimize
uncertainties in both parts of the permittivity either individually or collectively.

Thus, it can be seen that among all the algorithms, the proposed algorithm is the most effective in
minimizing uncertainties in deducing complex permittivity of thin samples.

5. DETERMINATIONS OF PERMITTIVITY OF DIAMOND FILMS

Above we have shown that whereas various iterative algorithms may be used to deduce complex
permittivity for thin dielectric samples, an improved algorithm may be employed to improve the accuracy
of the results. To validate this conclusion, measurements are made on an undoped and a boron-doped
diamond film. These two samples have been selected since firstly the thickness of the two samples is
small, and secondly while the undoped diamond film may be used as a standard sample, the boron-doped
diamond film may be used as a representative high dielectric loss sample.

In the measurements, an Agilent N5244a vector network analyzer is used. A Thru-Reflect-Line
calibration procedure [10] is carried out before the measurements. Samples are inserted into a K-band
waveguide fixture with a length of La = 4.5 mm. From measured S-parameters, complex permittivity of
the samples is derived using the various algorithms mentioned above. Dimension uncertainties in both
the fixture and the samples are ΔLa = 0.02 mm, ΔL = 0.01 mm, respectively.

Figure 4 shows the results derived with the various algorithms for the undoped diamond film. The
thickness of the sample is only 0.37 mm. It is shown by using resonant cavity methods that an undoped
diamond film will have a relative permittivity between 5.5 and 5.7, and its dielectric loss tangent is less
than 10−4 [16–19]. In Figs. 4(a), (c), we see that the uncertainty in the real part of the permittivity
derived by using Eq. (1) remains the largest, while that obtained with the proposed method is the lowest.
Also, from Fig. 4(a) we see that the real part of the permittivity derived by the proposed method is in
the range of 5.51± 0.15 which not only has the smallest uncertainty, but also is frequency independent.
This is consistent with the results of the literature [18]. In contrary, all results derived with the other
methods somewhat show frequency dependency.

Also, from Fig. 4(d) we see that the uncertainty deduced by our methodology for the imaginary
part of the permittivity is the lowest among all the methodologies compared. This proves that the
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(a) (b)

(c) (d)

Figure 4. (a) The real and (b) imaginary part of the complex permittivity and (c), (d) their
uncertainties measured for the undoped diamond film.

proposed algorithm is better than all the others. On the other hand, from Fig. 4(c) we notice that the
values of the imaginary part of the complex permittivity derived by all the four algorithms are physically
meaningless (far from the accurate value ε′′r ≈ 0.0003 measured by using a split-cylinder resonator [19]).
This discrepancy is because the non-resonant T/R method is limited in its accuracy in measuring the
imaginary part of the complex permittivity when being used to characterize low-loss materials [20].

Figure 5 shows the results of the complex permittivity and corresponding uncertainties for the
boron doped diamond film. The thickness of this sample is 0.46 mm, and its boron concentration has
been determined by FT-IR as 6.0 × 1018 cm−3 [21]. From Figs. 5(a), (b), we see that for this high-loss
diamond film sample, both the real and imaginary parts of the complex permittivity are frequency
dependent, irrespective of the algorithms used. This is explained by considering two contributions, i.e.,
the hopping polarization of bound charges and valence band conduction of free charge carriers exist in
the boron doped diamond film [21]. From Fig. 5, we see once again that the results derived by using
Eq. (1) have the highest uncertainties in both the real and imaginary parts of the complex permittivity.
On the other hand, though both the Baker-Jarvis and Kato algorithms may be used to improve accuracy
of the results, the most accurate results are the ones obtained with the proposed algorithm.



8 Ding et al.

(a) (b)

(c) (d)

Figure 5. (a) The real and (b) imaginary part of the complex permittivity and (c), (d) their
uncertainties measured for the boron doped diamond film.

6. CONCLUSIONS

In this paper, an improved iterative algorithm for deducing complex permittivity of thin dielectric
samples is proposed. The improvement has been made on the algorithms previously developed by
Baker-Jarvis et al. and Kato et al. It is shown that by using two distinct weighting factors separately
in determining the real and imaginary part of the complex permittivity, more accurate results may be
obtained. Numerical calculations are carried out, and experimental measurements are made on two
thin diamond film samples, proving that the proposed algorithm is effective in reducing measurement
uncertainty in measuring dielectric properties of thin samples with the T/R method.
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