Vol. 83
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-23
A Design Oriented Linear Model for CRLH Distributed Oscillators
By
Progress In Electromagnetics Research M, Vol. 83, 83-92, 2019
Abstract
The aim of this paper is to present a model for a Composite Right-/Left-Handed (CRLH) distributed oscillator. A linear approach is used for the analysis of the circuit. The effects of the losses and of the parasitic elements, both present in the active devices and in the passive components, are included. Analytic formulas for the design of the transmission lines used in the oscillator are given. The model is validated by means of a comparison with previously published measured data.
Citation
Giancarlo Bartolucci, Stefan Simion, and Lucio Scucchia, "A Design Oriented Linear Model for CRLH Distributed Oscillators," Progress In Electromagnetics Research M, Vol. 83, 83-92, 2019.
doi:10.2528/PIERM19052204
References

1. Lin, Y.-S., J.-F. Chang, and S.-S. Lu, "Analysis and design of CMOS distributed amplifier using inductively peaking cascaded gain cell for UWB systems," IEEE Trans. Microwave Theory Techn., Vol. 59, No. 10, 2513-2524, 2011.
doi:10.1109/TMTT.2011.2163726

2. Entesari, K., A. R. Tavakoli, and A. Helmy, "CMOS distributed amplifiers with extended flat bandwidth and improved input matching using gate line with coupled inductors," IEEE Trans. Microwave Theory Techn., Vol. 57, No. 12, 2862-2871, 2009.
doi:10.1109/TMTT.2009.2034044

3. Bartolucci, G., F. Giannini, and L. Scucchia, "Design considerations for the gate circuit in distributed amplifiers," IET Circuits Devices Systems, Vol. 4, No. 3, 181-187, 2010.
doi:10.1049/iet-cds.2008.0319

4. Guan, X. and C. Nguyen, "Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems," IEEE Trans. Microwave Theory Techn., Vol. 54, No. 8, 3278-3283, 2006.
doi:10.1109/TMTT.2006.877812

5. Lo, W. K. and W. S. Chan, "Broadband integrated active divider and combiner based on distributed amplification," Electronics Letters, Vol. 44, No. 13, 779-780, 2008.
doi:10.1049/el:20080998

6. Safarian, A., L. Zhou, and P. Heydari, "CMOS distributed active power combiners and splitters for multi-antenna UWB beamforming transceivers," IEEE J. Solid-State Circuits, Vol. 42, No. 7, 1481-1491, Jul. 2007.
doi:10.1109/JSSC.2007.899121

7. Testa, P. V., C. Carta, and F. Ellinger, "Analysis and design of a 220-GHz wideband SiGe BiCMOS distributed active combiner," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 10, 3049-3059, Oct. 2016.
doi:10.1109/TMTT.2016.2604384

8. Carman, E., M. Case, M. Kamegawa, R. Yu, K. Giboney, and M. J. W. Rodwell, "V-band and W-band broadband, monolithic distributed frequency multipliers," IEEE Microwave Guided Wave Lett., Vol. 2, 253-254, 1992.
doi:10.1109/75.136523

9. Tang, Y. L., P.-Y. Chen, and H. Wang, "A broadband PHEMT MMIC distributed doubler using high-pass drain line topology," IEEE Microwave and Wireless Components Lett., Vol. 14, No. 5, 201-203, May 2004.
doi:10.1109/LMWC.2004.827860

10. Simion, S. and G. Bartolucci, "Distributed amplifier based broadband and low spurious frequency doubler," Romanian Journal of Information Science and Technology, Vol. 20, No. 4, 331-341, 2017.

11. Hung, J. J., L. Dussopt, and G. M. Rebeiz, "Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates," IEEE Trans. Microwave Theory Techn., Vol. 52, No. 2, 600-606, 2004.
doi:10.1109/TMTT.2003.821941

12. Bartolucci, G., "Image parameter modeling of analog traveling-wave phase shifters," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 10, 1505-1509, 2002.
doi:10.1109/TCSI.2002.803364

13. Topali, K., O. A. Civi, S. Demir, S. Koc, and T. Akin, "A monolithic phased array using 3-bit distributed RF MEMS phase shifters," IEEE Trans. Microwave Theory Techn., Vol. 56, No. 2, 270-277, 2008.
doi:10.1109/TMTT.2007.914377

14. Du, Y., J. Bao, and X. Zhao, "5-bit MEMS distributed phase shifter," Electronics Letters, Vol. 46, No. 21, 1452-1453, 2010.
doi:10.1049/el.2010.2492

15. Bartolucci, G., S. Catoni, F. Giacomozzi, R. Marcelli, B. Margesin, and D. Pochesci, "Realisation of distributed RF MEMS phase shifter with very low number of switches," Electronics Letters, Vol. 43, No. 23, 1290-1292, 2007.
doi:10.1049/el:20071679

16. Skvor, Z., S. R. Saunders, and C. S. Aitchison, "Novel decade electronically tunable microwave oscillator based on the distributed amplifier," Electronics Letters, Vol. 28, No. 17, 1647-1648, 1992.
doi:10.1049/el:19921048

17. Divina, L. and Z. Skvor, "The distributed oscillator at 4 GHz," IEEE Trans. Microwave Theory Techn., Vol. 46, No. 12, 2240-2243, 1998.
doi:10.1109/22.739204

18. Wu, H. and A. Hajimiri, "Silicon-based distributed voltage-controlled oscillators," IEEE Journal of Solid-State Circuits, Vol. 36, No. 3, 493-502, 2001.
doi:10.1109/4.910488

19. Aku, M. O. and R. S. Imam, "Silicon bipolar distributed oscillator design and analysis," Science World Journal, Vol. 9, No. 4, 29-38, 2014.

20. Bhattacharyya, K., "Tunable distributed harmonic voltage controlled oscillator for generating second and third harmonic microwave signals in 180 nm CMOS," International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA), 1-4, 2016.

21. Simion, S. and G. Bartolucci, "High power efficiency distributed oscillator based on composite-right-/left-handed unit cells," Appl. Phys. Lett., Vol. 107, 104102, 2015.
doi:10.1063/1.4930580

22. Bartolucci, G., S. Simion, and L. Scucchia, "Power performance and spurious frequencies analysis of composite right-/left-handed (CRLH) distributed oscillators," Progress In Electromagnetics Research Letters, Vol. 75, 67-73, 2018.
doi:10.2528/PIERL18010944

23. Simion, S. and G. Bartolucci, "Design considerations and experimental results on composite right-/left-handed based distributed oscillator," International Conference on Computer as a Tool, (EUROCON 2015), 1-6, Salamanca, Spain, September 8-11, 2015.