1. Lin, Y.-S., J.-F. Chang, and S.-S. Lu, "Analysis and design of CMOS distributed amplifier using inductively peaking cascaded gain cell for UWB systems," IEEE Trans. Microwave Theory Techn., Vol. 59, No. 10, 2513-2524, 2011.
doi:10.1109/TMTT.2011.2163726
2. Entesari, K., A. R. Tavakoli, and A. Helmy, "CMOS distributed amplifiers with extended flat bandwidth and improved input matching using gate line with coupled inductors," IEEE Trans. Microwave Theory Techn., Vol. 57, No. 12, 2862-2871, 2009.
doi:10.1109/TMTT.2009.2034044
3. Bartolucci, G., F. Giannini, and L. Scucchia, "Design considerations for the gate circuit in distributed amplifiers," IET Circuits Devices Systems, Vol. 4, No. 3, 181-187, 2010.
doi:10.1049/iet-cds.2008.0319
4. Guan, X. and C. Nguyen, "Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems," IEEE Trans. Microwave Theory Techn., Vol. 54, No. 8, 3278-3283, 2006.
doi:10.1109/TMTT.2006.877812
5. Lo, W. K. and W. S. Chan, "Broadband integrated active divider and combiner based on distributed amplification," Electronics Letters, Vol. 44, No. 13, 779-780, 2008.
doi:10.1049/el:20080998
6. Safarian, A., L. Zhou, and P. Heydari, "CMOS distributed active power combiners and splitters for multi-antenna UWB beamforming transceivers," IEEE J. Solid-State Circuits, Vol. 42, No. 7, 1481-1491, Jul. 2007.
doi:10.1109/JSSC.2007.899121
7. Testa, P. V., C. Carta, and F. Ellinger, "Analysis and design of a 220-GHz wideband SiGe BiCMOS distributed active combiner," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 10, 3049-3059, Oct. 2016.
doi:10.1109/TMTT.2016.2604384
8. Carman, E., M. Case, M. Kamegawa, R. Yu, K. Giboney, and M. J. W. Rodwell, "V-band and W-band broadband, monolithic distributed frequency multipliers," IEEE Microwave Guided Wave Lett., Vol. 2, 253-254, 1992.
doi:10.1109/75.136523
9. Tang, Y. L., P.-Y. Chen, and H. Wang, "A broadband PHEMT MMIC distributed doubler using high-pass drain line topology," IEEE Microwave and Wireless Components Lett., Vol. 14, No. 5, 201-203, May 2004.
doi:10.1109/LMWC.2004.827860
10. Simion, S. and G. Bartolucci, "Distributed amplifier based broadband and low spurious frequency doubler," Romanian Journal of Information Science and Technology, Vol. 20, No. 4, 331-341, 2017.
11. Hung, J. J., L. Dussopt, and G. M. Rebeiz, "Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates," IEEE Trans. Microwave Theory Techn., Vol. 52, No. 2, 600-606, 2004.
doi:10.1109/TMTT.2003.821941
12. Bartolucci, G., "Image parameter modeling of analog traveling-wave phase shifters," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 10, 1505-1509, 2002.
doi:10.1109/TCSI.2002.803364
13. Topali, K., O. A. Civi, S. Demir, S. Koc, and T. Akin, "A monolithic phased array using 3-bit distributed RF MEMS phase shifters," IEEE Trans. Microwave Theory Techn., Vol. 56, No. 2, 270-277, 2008.
doi:10.1109/TMTT.2007.914377
14. Du, Y., J. Bao, and X. Zhao, "5-bit MEMS distributed phase shifter," Electronics Letters, Vol. 46, No. 21, 1452-1453, 2010.
doi:10.1049/el.2010.2492
15. Bartolucci, G., S. Catoni, F. Giacomozzi, R. Marcelli, B. Margesin, and D. Pochesci, "Realisation of distributed RF MEMS phase shifter with very low number of switches," Electronics Letters, Vol. 43, No. 23, 1290-1292, 2007.
doi:10.1049/el:20071679
16. Skvor, Z., S. R. Saunders, and C. S. Aitchison, "Novel decade electronically tunable microwave oscillator based on the distributed amplifier," Electronics Letters, Vol. 28, No. 17, 1647-1648, 1992.
doi:10.1049/el:19921048
17. Divina, L. and Z. Skvor, "The distributed oscillator at 4 GHz," IEEE Trans. Microwave Theory Techn., Vol. 46, No. 12, 2240-2243, 1998.
doi:10.1109/22.739204
18. Wu, H. and A. Hajimiri, "Silicon-based distributed voltage-controlled oscillators," IEEE Journal of Solid-State Circuits, Vol. 36, No. 3, 493-502, 2001.
doi:10.1109/4.910488
19. Aku, M. O. and R. S. Imam, "Silicon bipolar distributed oscillator design and analysis," Science World Journal, Vol. 9, No. 4, 29-38, 2014.
20. Bhattacharyya, K., "Tunable distributed harmonic voltage controlled oscillator for generating second and third harmonic microwave signals in 180 nm CMOS," International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA), 1-4, 2016.
21. Simion, S. and G. Bartolucci, "High power efficiency distributed oscillator based on composite-right-/left-handed unit cells," Appl. Phys. Lett., Vol. 107, 104102, 2015.
doi:10.1063/1.4930580
22. Bartolucci, G., S. Simion, and L. Scucchia, "Power performance and spurious frequencies analysis of composite right-/left-handed (CRLH) distributed oscillators," Progress In Electromagnetics Research Letters, Vol. 75, 67-73, 2018.
doi:10.2528/PIERL18010944
23. Simion, S. and G. Bartolucci, "Design considerations and experimental results on composite right-/left-handed based distributed oscillator," International Conference on Computer as a Tool, (EUROCON 2015), 1-6, Salamanca, Spain, September 8-11, 2015.