Vol. 85
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-07-30
Design and Analysis of a Broadband High Isolation Dual-Polarized Omnidirectional Antenna
By
Progress In Electromagnetics Research B, Vol. 85, 65-83, 2019
Abstract
A high isolation broadband dual-polarized omnidirectional antenna comprising two low profile orthogonally polarized omnidirectional radiating elements is presented. A modified monopole using loadings to broaden impedance bandwidth is applied to vertical polarization (VP), while four printed concentrically arranged Yagi-Uda-like antennas are employed for horizontal polarization (HP). Both the simulated and measured results indicate that the operating bands of the proposed antenna with its reflection coefficient less than -10 dB are 1.48 to 3.16 GHz for VP and 1.69 to 2.7 GHz for HP. A good port isolation larger than 40 dB and omnidirectional patterns with the out-of-roundness less than 2 dB in horizontal plane are obtained. This paper explains the radiation mechanism by investigating the simulated surface current distributions for VP element and establishing a radiation model for HP element, and also analyzes the performance of the proposed antenna. This antenna design can be applied to 4G (LTE) communication system.
Citation
Yuwei Zhang, Shu Lin, Shang Yu, Shoulan Liu, Guanjun Liu, and Alexander Denisov, "Design and Analysis of a Broadband High Isolation Dual-Polarized Omnidirectional Antenna," Progress In Electromagnetics Research B, Vol. 85, 65-83, 2019.
doi:10.2528/PIERB19051303
References

1. Technical specification group radio access network; evolved universal terrestrial radio access (EUTRA); base station (BS) radio transmission and reception, version (release 9) Third Generation Partnership Project(3GPP); TS 36.104 V12.7.0; 2015. IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 81–87, 2017.

2. Yu, L., J. D. Song, Y. Gao, K. He, and F. Gao, "Low-profile dual-polarized omnidirectional antenna for broadband indoor distributed antenna system," Progress In Electromagnetics Research Letters, Vol. 67, 39-45, 2017.
doi:10.2528/PIERL17021704

3. Zhang, Y. W., S. Lin, S. Yu, S. L. Liu, G. J. Liu, and A. Denisov, "A dual-polarized omnidirectional antenna with two kinds of printed wideband low-profile radiating elements," Progress In Electromagnetics Research Letters, Vol. 80, 149-157, 2018.
doi:10.2528/PIERL18111904

4. Bai, X., M. Su, Z. D. Gao, and Y. A. Liu, "Broadband dual-polarized omnidirectional antenna based on magnetic dipoles," IEICE Electronics Express, Vol. 15, No. 5, 1-8, 2018.
doi:10.1587/elex.15.20171149

5. Bhadoria, B. and S. Kumar, "A novel omnidirectional triangular patch antenna array using Dolph- Chebyshev current distribution for C-band applications," Progress In Electromagnetics Research M, Vol. 71, 75-84, 2018.
doi:10.2528/PIERM18051402

6. Puente, C., C. Borja, A. Teillet, D. Kirchoffer, and J. Anguera, Slim triple band antenna array for cellular base stations, US Patent 8,497,814.

7. Barba, M., "A high-isolation, wideband and dual-linear polarization patch antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1472-1476, 2008.
doi:10.1109/TAP.2008.922889

8. Koohestani, M., A. A. Moreira, A. K. Skrivervik, and A. M. Kasgari, "A novel compact CPW-fed polarization diversity ultrawideband antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, No. 13, 563-566, 2014.
doi:10.1109/LAWP.2014.2312730

9. Pattnaik, S., S. S. Behera, and S. Sahu, "Design of a new compact UWB polarization diversity antenna with stepped CPW-feed," India Conf., 1-4, 2016.

10. Chacko, B. P., G. Augustin, and T. A. Denidni, "Electronically reconfigurable uniplanar antenna with polarization diversity for cognitive radio applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 213-216, 2015.
doi:10.1109/LAWP.2014.2360353

11. Yahya, R., A. Nakamura, M. Itami, and T. A. Denidni, "A novel UWB FSS-based polarization diversity antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 1, 2525-2528, 2017.
doi:10.1109/LAWP.2017.2730161

12. Dai, X. W., Z. Y. Wang, C. H. Liang, X. Chen, and L. T. Wang, "Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE application," IEEE Antennas Wireless Propag. Lett., Vol. 12, No. 3, 1492-1495, 2013.
doi:10.1109/LAWP.2013.2289743

13. Jolani, F., Y. Yu, and Z. Chen, "A novel broadband omnidirectional dual polarized mimo antenna for 4G LTE applications," Proc.Int. Wireless Symp., 1-4, 2014.

14. Huang, H., Y. Liu, and S. Gong, "Broadband dual-polarized omnidirectional antenna for 2G/3G/LTE/WiFi applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 576-579, 2016.
doi:10.1109/LAWP.2015.2458981

15. Wu, J., S. Yang, Y. Chen, S. Qu, and Z. Nie, "A low profile dualpolarized wideband omnidirectional antenna based on AMC reflector," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 368-374, 2017.
doi:10.1109/TAP.2016.2631147

16. Guo, D., K. He, Y. Zhang, and M. Song, "A multiband dual-polarized omnidirectional antenna for indoor wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 99, 290-293, 2017.
doi:10.1109/LAWP.2016.2573840

17. Zhao, Z. T., J. X. Lai, B. T. Feng, and C. Y. D. Sim, "A dual-polarized dual-Band antenna with high gain for 2G/3G/LTE indoor communications," IEEE Access, Vol. 6, 61622-61632, 2018.

18. Quan, X. L. and R. L. Li, "A broadband dual-polarized omnidirectional antenna for base stations," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 943-947, 2013.
doi:10.1109/TAP.2012.2223450

19. Lai, J. W., C. L. Tang, S. T. Fang, and K. L. Wong, "Broadband lowprofile cylindrical monopole antenna for 1800 MHz operation," Microw. Opt. Technol. Lett., Vol. 41, No. 1, 39-40, 2004.
doi:10.1002/mop.20039

20. Yang, S. L. S. and K. M. Luk, "Design of a wide-band L-probe patch antenna for pattern reconfiguration or diversity applications," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 433-438, 2006.
doi:10.1109/TAP.2005.863376

21. Yi, L. P., G. S. Lamba, A. Gupta, and E. K. N. Yung, "A small omnidirectional patch antenna with ultra wide impedance bandwidth," Microwave Conference, 2008, APMC 2008, 1-4, Asia-Pacific, 2008.

22. Wu, W., Y. Yin, Y. Zhao, and S. Zuo, "A miniaturized low-profile antenna for WLAN communications," Microw. Opt. Technol. Lett., Vol. 52, No. 6, 1384-1386, 2010.
doi:10.1002/mop.25203

23. Li, R. L., B. Pan, T. Wu, and K. Lim, "A broadband printed dipole and a printed array for base station applications," Proc. IEEE Int. Symp. AP-S, 1-4, Jul. 2008.

24. Anguera, J., E. Martnez-Ortigosa, C. Puente, C. Borja, and J. Soler, "Broadband triple-frequency microstrip patch radiator combining a dual-band modified Sierpinski fractal and a monoband antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3367-3373, 2006.
doi:10.1109/TAP.2006.884209

25. Tefiku, F. and C. A. Grimes, "Design of broad-band and dual-band antennas comprised of series-fed printed-strip dipole pairs," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 895-900, 2000.
doi:10.1109/8.865221

26. Li, R. L., T. Wu, B. Pan, K. Lim, J. Laskar, and M. M. Tentzeris, "Equivalentcircuit analysis of a broadband printed dipole with adjusted integrated balun and an array for base station applications," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2180-2184, 2009.
doi:10.1109/TAP.2009.2021967

27. Li, R. L., G. Dejean, J. Laskar, and M. M. Tentzeris, "Investigation of circularly polarized loop antennas with a parasitic element for bandwidth enhancement," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 3930-3939, 2005.
doi:10.1109/TAP.2005.859917

28. Jayasinghe, J. W., J. Anguera, D. N. Uduwawala, and A. Anujar, "A multipurpose genetically engineered microstrip patch antennas: Bandwidth, gain, and polarization," Microw. Opt. Technol. Lett., Vol. 59, No. 4, 941-949, 2017.
doi:10.1002/mop.30439

29. Lin, S., Y. Tian, J. Lu, D. Wu, J. H. Liu, and H. J. Zhang, "A UWB printed dipole antenna and its radiation characteristic analysis," Progress In Electromagnetics Research C, Vol. 31, 83-96, 2012.
doi:10.2528/PIERC12050501

30. Khan, S. and K. T. Wong, "Electrically long dipoles in a crossed pair for closed-form estimation of an incident sources polarization," IEEE Trans. Antennas Propag. (Early Access), 1-14, 2019.