Vol. 83
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-07
An Inverse Electromagnetic Scattering Problem for an Ellipsoid
By
Progress In Electromagnetics Research M, Vol. 83, 141-150, 2019
Abstract
The scattering problem of time-harmonic electromagnetic plane waves by an impedance and a dielectric ellipsoid is considered. A low-frequency formulation of the direct scattering problem using the Rayleigh approximation is described. Considering far-field data, an inverse electromagnetic scattering problem is formulated and studied. A finite number of measurements of the leading-order term of the electric far-field pattern in the low-frequency approximation leads to specifying the semi-axes of the ellipsoid. The orientation of the ellipsoid is obtained by using the Euler angles. Corresponding results for the sphere, spheroid, needle and disc can be obtained considering them as geometrically degenerate forms of the ellipsoid for suitable values of its geometrical parameters.
Citation
Evangelia S. Athanasiadou, Stefania Zoi, and Ioannis Arkoudis, "An Inverse Electromagnetic Scattering Problem for an Ellipsoid," Progress In Electromagnetics Research M, Vol. 83, 141-150, 2019.
doi:10.2528/PIERM19051005
References

1. Athanasiadis, C., P. Martin, and I. G. Stratis, "On spherical-wave scattering by a spherical scatterer and related near-field inverse problems," IMA J. Appl. Math., Vol. 66, 539-549, 2001.
doi:10.1093/imamat/66.6.539

2. Athanasiadis, C., Wave Propagation Elements and Applications, HOU, 2015.

3. Athanasiadis, C. and N. Tsitsas, "Point-source excitation of a layered sphere: Direct and far-field inverse scattering problems," Quarterly Journal of Mechanics and Applied Mathematics, Vol. 61, 549-580, 2008.
doi:10.1093/qjmam/hbn017

4. Apostolopoulos, T., K. Kiriaki, and D. Polyzos, "The inverse scattering problem for a rigid ellipsoid in linear elasticity," Inverse Problems, Vol. 6, 1-9, 1990.
doi:10.1088/0266-5611/6/1/003

5. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Ed., Springer, 1998.
doi:10.1007/978-3-662-03537-5

6. Dassios, G., "The inverse scattering problem for the soft ellipsoid," Journal of Mathematical Physics, Vol. 28, 2858-2862, 1987.
doi:10.1063/1.527684

7. Dassios, G. and K. Kiriaki, "Size, orientation, and thickness identification of an ellipsoidal shell," Workshop on Inverse Problems and Imaging, Glasgow 1989, Proceedings, 38-48, Glasgow, 1991.

8. Dassios, G. and R. Lucas, "Inverse scattering for the penetrable ellipsoid and ellipsoidal boss," Journal of the Acoustical Society of America, Vol. 99, 1877-1882, 1996.
doi:10.1121/1.415370

9. Dassios, G. and R. Lucas, "Electromagnetic imaging of ellipsoids and ellipsoidal bosses," Quarterly Journal of Mechanics and Applied Mathematics, Vol. 51, 413-426, 1998.
doi:10.1093/qjmam/51.3.413

10. Dassios, G. and R. Kleinman, Low Frequency Scattering, Oxford University Press, 2000.

11. Dassios, G., Ellipsoidal Harmonics: Theory and Applications, Cambridge University Press, 2012.
doi:10.1017/CBO9781139017749

12. Lucas, R. J., "An inverse problem in low-frequency scattering by a rigid ellipsoid," Journal of the Acoustical Society of America, Vol. 95, 2330-2333, 1994.
doi:10.1121/1.409868

13. Shifrin, E. I. and P. S. Shushpannikov, "Reconstruction of an ellipsoidal defect in anisotropic elastic solid, using results of one static test," Inverse Problems in Science and Engineering, Vol. 21, 781-800, 2013.
doi:10.1080/17415977.2012.738677

14. Vafeas, P., "Revisiting the low-frequency dipolar perturbation by an impenetrable ellipsoid in a conductive surrounding," Mathematical Problems in Engineering, Vol. 2017, 1-16, 2017.
doi:10.1155/2017/9420658