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An Inverse Electromagnetic Scattering Problem for an Ellipsoid

Evangelia S. Athanasiadou, Stefania Zoi*, and Ioannis Arkoudis

Abstract—The scattering problem of time-harmonic electromagnetic plane waves by an impedance
and a dielectric ellipsoid is considered. A low-frequency formulation of the direct scattering problem
using the Rayleigh approximation is described. Considering far-field data, an inverse electromagnetic
scattering problem is formulated and studied. A finite number of measurements of the leading-order
term of the electric far-field pattern in the low-frequency approximation leads to specify the semi-axes
of the ellipsoid. The orientation of the ellipsoid is obtained by using the Euler angles. Corresponding
results for the sphere, spheroid, needle, and disc can be obtained considering them as geometrically
degenerate forms of the ellipsoid for suitable values of its geometrical parameters.

1. INTRODUCTION

The inverse scattering theory has a lot of important applications in medical imaging, geological studies,
and detection of buried or underwater objects. An ellipsoid can be considered as a good approximation
for the shape of many objects such as spheres, spheroids, needles, and discs. Therefore, inverse scattering
problems for ellipsoids are significant.

In a series of papers, Dassios and his coauthors have published results about ellipsoids in inverse
scattering problems using far-field data and specifically the low frequency coefficients of the far-field
patterns and the scattering cross-sections. Dassios in [6] first introduced a new method for solving
inverse scattering problems for an acoustically soft ellipsoid. Later, similar problems were studied for
a rigid and a penetrable ellipsoid for acoustic waves as well as an acoustic ellipsoidal boss [8, 12], a
rigid ellipsoid for elastic waves [4], an ellipsoidal perfect conductor, and an electromagnetic ellipsoidal
boss [9]. Moreover, inverse scattering problems concerning ellipsoids have been studied for acoustic
waves in [7], for elastic waves in [13], and for electromagnetic waves in [14]. Also, inverse scattering
problems concerning spheres have been treated in [1] and [3].

In the present work, this method is extended for the case of an impedance ellipsoid and the case
of a dielectric ellipsoid. The far-field pattern in terms of low-frequency coefficients is used, and then
a measurement matrix is constructed whose eigenvalues and eigenvectors provide information for the
semi-axes and orientation of the ellipsoid.

In Section 2, the direct scattering problem is formulated, and the formula of the far-field pattern
for the impedance ellipsoid as well as for the lossy and lossless dielectric ellipsoid is given. In Section 3,
the inverse scattering problem using far-field data for each case is studied. A matrix whose elements
are given in terms of measurements of the leading order low-frequency coefficient is constructed. The
eigenvalues and eigenvectors of this matrix provide information about the size and orientation of the
ellipsoid, respectively. In Section 4, corresponding results are presented for the spheroid and the sphere
considering them as geometrically degenerate forms of the ellipsoid. In Section 5, a numerical example
is presented. In Section 6, a conclusion to this paper is given. Finally, a flowchart corresponding to the
algorithm of the method is given in the Appendix.
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2. THE DIRECT SCATTERING PROBLEM

The surface of an ellipsoid centered at the origin with principal semi-axes αn along the axes xn has the
equation:

S :
3∑

n=1

x2
n

α2
n

= 1, (1)

where (x1, x2, x3) is the Cartesian coordinates and α1 > α2 > α3 > 0. The ellipsoidal coordinates
(ρ, μ, ν) satisfy the inequalities:

−h3 ≤ ν ≤ h3 ≤ μ ≤ h2 ≤ ρ < +∞. (2)

where h1, h2, h3 are the semi-interfocal distances given by:

h2
1 = α2

2 − α2
3, h2

2 = α2
1 − α2

3, h2
3 = α2

1 − α2
2. (3)

Let V + be the exterior, V − the interior region of S, and n̂ the outward unit normal vector on S. In
the ellipsoidal coordinate system, the surface S is defined by ρ = α1, the exterior by ρ > α1, and the
interior by

√
α2

1 − α2
3 ≤ ρ < α1 (Figure 1).

Figure 1. Ellipsoidal scatterer of surface S.

The superscripts ± denote parameters or vectors in the region V ±, respectively. A given time-
harmonic electromagnetic plane wave of the form:

Ei
(
r; d̂, p̂

)
= p̂eikd̂·r, Hi

(
r; d̂, q̂

)
=

1
Z+

q̂eikd̂·r, (4)

where k is the wave number in V + and Z+ =
√

μ+/ε+ the characteristic impedance with ε+, μ+

being the electric permittivity and magnetic permeability in V +, respectively, and the electromagnetic
plane wave of the form in Eq. (4) is incident upon the ellipsoid of surface S. The unit vectors d̂, p̂, q̂
describe the direction of propagation, the electric and magnetic polarizations, respectively, and satisfy
the relations p̂ · d̂ = q̂ · d̂ = 0 and d̂× p̂ = q̂.

In the present work, the cases of an impedance ellipsoidal surface and a dielectric surface are
studied. In both cases, the total field E+,H+ in V + satisfies the Maxwell equations:

∇× E+ = iωμ+H+, ∇× H+ = −iωε+E+ in V +, (5)
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where ω is the angular frequency. Moreover, in the case of the dielectric ellipsoid, the total interior field
E−,H− in V − satisfies the Maxwell equations:

∇× E− = iωμ−H−, ∇× H− =
(−iωε− + σ−)

E− in V −, (6)

where σ− is the conductivity in V −.
For the case of the impedance surface S, the following boundary condition is satisfied:

n̂× E+ = ZsZ
+n̂ × (

n̂ ×H+
)

on S, (7)

where Zs denotes the surface impedance. For the case of the dielectric surface S, the following
transmission conditions are satisfied:

n̂× E+ = n̂ ×E−, n̂× H+ = n̂× H− on S. (8)

In both the cases, the total field can be written as the superposition of the incident field Ei,Hi and
scattered field Es,Hs which is assumed to satisfy the Silver-Müller radiation condition:

Z+r̂× Hs + Es = o

(
1
r

)
, r → ∞ (9)

uniformly in all directions r̂ = r
r , r = |r|. For more details on the direct scattering problems, we refer

to books [2] and [5]. In what follows, only the electric far-field patterns are used for brevity. Analogous
results can be obtained by using the magnetic far-field patterns. Moreover, the superscripts I,D,L will
denote the impedance, lossless (σ− = 0), and lossy (σ− > 0) dielectric ellipsoids, respectively. The
superscript A = I,D,L will denote all the above cases. The low-frequency expansion of the electric
far-field pattern E∞(A), for A = I,D,L, is given by [10, 11]:

E∞(A)
(
r̂; d̂, p̂

)
= −ik3

3∑
n=1

[
W (A)

n r̂× (r̂× x̂n) (x̂n · p̂) + T (A)
n (r̂× x̂n) (x̂n · q̂)

]
+ O(k4), (10)

with

W (D)
n =

V

3
(μ+η2 − μ−)

(μ+η2 − μ−) V In
1 + μ− , W (L)

n = W (I)
n =

1
3In

1

, (11)

T (D)
n = T (L)

n =
V

3
(μ+ − μ−)

(μ+ − μ−)V In
1 − μ+

, T (I)
n =

1
3

(12)

where V = α1α2α3, η is the relative index of refraction and In
1 the elliptic integral of degree 1 and order

n = 1, 2, 3, where:

In
1 (ρ) =

1
2

∫ ∞

ρ2−α2
1

du

(u + α2
n)

√
u + α2

1

√
u + α2

2

√
u + α2

3

, (13)

with
I1
1 (ρ) + I2

1 (ρ) + I3
1 (ρ) =

1
ρ
√

ρ2 − h2
2

√
ρ2 − h2

3

, (14)

and In
1 = In

1 (α1) with

I1
1 + I2

1 + I3
1 =

1
V

. (15)

Based on the following relations:
3∑

n=1

W (A)
n r̂× (r̂ × x̂n) (x̂n · p̂) = −r̂×

(
W (A)p̂

)
× r̂ (16)

and
3∑

n=1

T (A)
n (r̂× x̂n) (x̂n · q̂) =

3∑
n=1

T (A)
n (̂r× x̂n)

(
x̂n · (d̂× p̂)

)
= r̂×

(
T (A)

(
d̂× p̂

))
, (17)
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the far-field pattern can be written as:

E∞(A)
(
r̂; d̂, p̂

)
= ik3f (A)(̂r; d̂, p̂) + O(k4), (18)

for k → 0, with the leading-order coefficient given by:

f (A)
(
r̂; d̂, p̂

)
= r̂×

[(
W (A)p̂

)
× r̂− T (A)

(
d̂× p̂

)]
, (19)

where W (A) = diag(W (A)
n ) and T (A) = diag(T (A)

n ) are 3 × 3 diagonal matrices with elements W
(A)
n and

T
(A)
n given in Eqs. (11) and (12) respectively for n = 1, 2, 3 and A = I,D,L.

3. THE INVERSE SCATTERING PROBLEM

Consider two Cartesian systems with the same origin and their corresponding orthonormal bases
{x̂1, x̂2, x̂3} and {x̂′

1, x̂′
2, x̂′

3}. The system {x̂1, x̂2, x̂3} coincides with the principal directions of the
unknown ellipsoid while the system {x̂′

1, x̂′
2, x̂′

3} is a known reference system. In order to specify the
orientation and size of the ellipsoid, the x′

i system is transformed to xi system with the use of orthogonal
rotation matrix P whose elements are given in terms of Euler angles (α, β, γ) (depicted in Figure 2) as
follows [11]:

P =

⎡
⎣ cos α cos γ − cos β sin α sin γ sin α cos γ + cos β cos α sin γ sin β sin γ

− cos α sin γ − cos β sin α cos γ − sin α sin γ + cos β cos α cos γ sin β cos γ

sinβ sin α − sinβ cos α cos β

⎤
⎦ (20)

Therefore, vectors r, r̂, d̂, p̂ satisfy the following rotation relations:

r = Pr′, r̂ = P r̂′, d̂ = P d̂′, p̂ = P p̂′. (21)

Figure 2. Euler angles.

Inserting the rotation relations in Eq. (21) for the directions in the coefficient f (A), they are
transformed from the x′

i system to xi. Then by multiplying f (A) with P�, we go back to the
reference system x′

i where the measurements will be taken. The superscript � denotes transposition
and P� = P−1 since P is orthogonal. Let

g(A)
(
r̂′; d̂′, p̂′

)
:= P�f (A)

(
P r̂′;P d̂′, P p̂′

)
= P�f (A)

(
r̂; d̂, p̂

)
. (22)

Therefore
g(A)

(
r̂′; d̂′, p̂′

)
= P�

{
P r̂′ ×

[
W (A)P p̂′ × P r̂′ − T (A)

(
P d̂′ × P p̂′

)]}
. (23)
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Letting the directions r̂′ = εijkx̂′
k, d̂′ = x̂′

i and p̂′ = x̂′
j, where εijk the permutation symbol with

εijk = εjki = εkij = 1 and εikj = εjik = εkji = −1, for 1 ≤ i, j, k ≤ 3 with i, j, k distinct, leads to:

g(A)
(
εijkx̂′

k; x̂
′
i, x̂

′
j

)
= εijkx̂′

k ×
[
P�W (A)P x̂′

j × εijkx̂′
k − P�T (A)P

(
x̂′

i × x̂′
j

)]
, (24)

which after calculations can be written as:

g(A)
(
εijkx̂′

k; x̂
′
i, x̂

′
j

)
=

[(
P�

i W (A)Pj + εijkP�
j T (A)Pk

)
x̂′

i +
(
P�

j W (A)Pj − εijkP�
i T (A)Pk

)
x̂′

j

]
, (25)

where Pj = P x̂′
j is the j-th column of matrix P and P�

j = x̂
′�
j P� the j-th row of matrix P�.

Since W (A) is diagonal for A = I,D,L, the following relations, for 1 ≤ i, j ≤ 3, are obtained:

P�
i W (A)Pj = P�

j W (A)Pi. (26)

Taking measurements of the vectors g(I),g(D) and g(L), for direction combinations along the axes x′
i

and specifically 6 direction combinations which are used to solve for P�
i W (A)Pj , leads to:

2P�
j W (A)Pj =

[
g(A)

(
εijkx̂′

k; x̂
′
i, x̂

′
j

)
+ g(A)

(
εkjix̂′

i; x̂
′
k, x̂

′
j

)] · x̂′
j , (27)

2P�
i W (A)Pj =

[
2g(A)

(
εijkx̂′

k; x̂
′
i, x̂

′
j

) − g(A)
(
εjikx̂′

k; x̂
′
j , x̂

′
i

)
+ g(A)

(
εkijx̂′

j ; x̂
′
k, x̂

′
i

)] · x̂′
i

=
[
2g(A)

(
εjikx̂x′

k; x̂
′
j , x̂

′
i

) − g(A)
(
εijkx̂′

k; x̂
′
i, x̂

′
j

)
+ g(A)

(
εkjix̂′

i; x̂
′
k, x̂′

j

)] · x̂′
j , (28)

The measurement matrices M (A), for the impedance, the lossless and lossy dielectric cases are
constructed as follows:

M (A) =
(
M

(A)
ij

)
, M

(A)
ij = 2P�

i W (A)Pj (29)

for 1 ≤ i, j ≤ 3. The above relation can be written in matrix form as:

M (A) = 2P�W (A)P, (30)

or since the rotation matrix P is orthogonal:

PM (A)P� = 2W (A), (31)

which is an orthogonal similarity relation between the measurement matrix M (A) and the diagonal
matrix W (A), for A = I,D,L.

The measurement matrix M (A) is real and symmetric, and each has three real eigenvalues λ
(A)
n and

three corresponding orthonormal eigenvectors v(A)
n for A = I,D,L. Therefore, based on the orthogonal

similarity relation, it is concluded that for n = 1, 2, 3:⎧⎨
⎩

λ
(A)
n = 2W (A)

n ,

vn =
(
P

(A)
n1 , P

(A)
n2 , P

(A)
n3

)
,

(32)

where P
(A)
n1 , P

(A)
n2 , P

(A)
n3 are elements of the nth row of rotation matrix P , and the superscript A

denotes the case of the impedance (I), lossless dielectric ellipsoid (D) and lossy dielectric ellipsoid
(L), respectively. From elements of the three orthogonal eigenvectors in each case, the elements of
matrix P are obtained, and therefore the Euler angles are specified by using the following relations [11]:

α(A) = sin−1

⎛
⎝ P

(A)
31√

1 − P
2(A)
33

⎞
⎠ , β(A) = sin−1

(√
1 − P

2(A)
33

)
, γ(A) = sin−1

⎛
⎝ P

(A)
13√

1 − P
2(A)
33

⎞
⎠ . (33)

These angles show the orientation of the ellipsoid in the impedance, the lossless dielectric and lossy
dielectric cases, respectively.
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From the system of equations that connect the eigenvalues with the elements of the diagonal
matrices W (I),W (D),W (L), the following system of equations for n = 1, 2, 3 is obtained:

λ(I)
n =

2
3

1
In
1

, (34)

λ(D)
n =

2V (D)

3

(
μ+η2 − μ−

(μ+η2 − μ−) V (D)In
1 + μ−

)
, (35)

λ(L)
n =

2
3

1
In
1

. (36)

From these equations, the semi-axes α1, α2, α3 are specified, and therefore, the size of the impedance,
lossless and lossy dielectric ellipsoids is obtained. Specifically, improper elliptic integrals are specified
directly from the eigenvalues via the following relations:

In
1 =

2

3λ(I)
n

, (37)

In
1 =

2

3λ(D)
n

−
2μ−

(
λ

(D)
1 λ

(D)
2 + λ

(D)
2 λ

(D)
3 + λ

(D)
1 λ

(D)
3

)
3 (μ+η2 + 2μ−) λ

(D)
1 λ

(D)
2 λ

(D)
3

. (38)

In
1 =

2

3λ(L)
n

. (39)

Moreover, the quantities V (A) can also be found in terms of the eigenvalues using the relation in Eq. (15).
Having found the quantities In

1 for n = 1, 2, 3 and using the relations that connect the improper elliptic
integrals with the incomplete elliptic integrals of the first kind (F ) and the second kind (E) ([11], p. 381):

I1
1 =

1
h2h2

3

(F (φ, α) − E(φ, α)) , (40)

I2
1 =

h2

(h2
2 − h2

3)h
2
3

E(φ, α) − 1
h2h

2
3

F (φ, α) − 1
(h2

2 − h2
3)

√
α2

1 − h2
2

α1

√
α2

1 − h2
3

, (41)

I3
1 = − 1

(h2
2 − h2

3)h2
E(φ, α) +

1
(h2

2 − h2
3)

√
α2

1 − h2
3

α1

√
α2

1 − h2
2

, (42)

leads to a system of three equations for the three unknowns α1, h2, h3 which can be solved using various
softwares (e.g., Matlab), and the three semi-axes can be obtained via the relations α2 =

√
α2

1 − h2
3 and

α3 =
√

α2
1 − h2

2. Alternatively, one can proceed similar to the method described in [9].
Note here that the inverse problem can also be solved using directions of observation in the forward

and backward directions of propagation instead of the directions of magnetic polarization as in the
method described above. In this case, letting r̂′ = cx̂′

i (with c = ±1), d̂′ = x̂′
i and p̂′ = x̂′

j for
1 ≤ i, j ≤ 3, leads to:

g(A)
(
cx̂′

i; x̂
′
i, x̂

′
j

)
=

[(
P�

j W (A)Pj + cP�
k T (A)Pk

)
x̂′

j +
(
P�

k W (A)Pj − cP�
j T (A)Pk

)
x̂′

k

]
, (43)

for A = I,D,L. Taking measurements for direction combinations similar to the previous method and
solving for P�

k W (A)Pj leads to:

2P�
j W (A)Pj =

[
g(A)

(
x̂′

i; x̂
′
i, x̂

′
j

)
+ g(A)

(−x̂′
i; x̂

′
i, x̂

′
j

)] · x̂′
j (44)

2P�
k W (A)Pj =

[
g(A)

(
x̂′

i; x̂
′
i, x̂

′
j

)
+ g(A)

(−x̂′
i; x̂

′
i, x̂

′
j

)] · x̂′
k

=
[
g(A)

(
x̂′

i; x̂
′
i, x̂

′
k

)
+ g(A)

(−x̂′
i; x̂

′
i, x̂

′
k

)] · x̂′
j (45)

Therefore, the following matrix is constructed:

M (A) = (M (A)
kj ), M

(A)
kj = P�

k W (A)Pj , (46)
for A = I,D,L, and its eigenvalues and eigenvectors are used to specify the orientation and size of the
unknown ellipsoidal scatterer as done previously.
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4. GEOMETRICALLY DEGENERATE FORMS

The cases of spheroids and spheres can be considered as geometrically degenerate forms of the ellipsoid.
Specifically, for the sphere, the following relations are valid:

α1 = α2 = α3, h2 = h3 = μ = ν = 0, In
1 (ρ) =

1
3ρ3

, (47)

for n = 1, 2, 3.
For the case of spheroids, the following relations are valid:

prolate spheroid: α1 > α2 = α3, h2 = h3, (48)

oblate spheroid: α1 = α2 > α3, h3 = 0. (49)

Based on the relation:

Ii
1 − Ij

1 =
α2

j − α2
i

2

∫ ∞

0

dx

(x + α2
i )(x + α2

j)R(x)
, (50)

with R(x) =
√

(x + α2
1)(x + α2

2)(x + α2
3), it can be observed that when λ1 = λ2 = λ3 ⇒ α1 = α2 = α3

which means that the unknown scatterer is a sphere independent of orientation and radius α1 = V
1
3 .

In the case that two out of the three eigenvalues are equal, i.e., λ2 = λ3, the scatterer is a spheroid.
Thus, based on [9] and the fact that M2 = M3, the following equation is valid:

1

1 −
(

α1

α2

)2

⎡
⎢⎢⎢⎢⎣1 −

(
α1

α2

)
cos−1

(
α1

α2

)
√

1 −
(

α1

α2

)2

⎤
⎥⎥⎥⎥⎦ = M1, (51)

and the semi-axes are given by:

α1 =
(

α2
1

α2
2

V

) 1
3

, α2 = α3 =
(

V α2

α1

) 1
3

, (52)

where V can be found in terms of eigenvalues λ1 and λ2 = λ3 using identity (15) since In
1 can also be

found in terms of them via relations in Eqs. (37)–(39) for each case, respectively.

5. NUMERICAL RESULTS

In this section, numerical results following this method are presented:
Numerical example

Taking far-field measurements and following the numerical algorithm depicted in the flowchart given
in the Appendix, the corresponding measurement matrix is constructed, and based on its eigenvalues
and eigenvectors the following numerical example is presented:

For measurements that give the measurement matrix:

M =

[96.1185 −0.4228 17.8598
−0.4228 88.0748 −0.3351
17.8598 −0.3351 87.7339

]
,

with eigenvalues and eigenvectors:

λ1 = 110.2845, λ2 = 88.0617, λ3 = 73.5810,
v1 = (0.7835,−0.0243, 0.6209), v2 = (−0.0190,−0.9997,−0.0151), v3 = (−0.6211, 0.0000, 0.7837),

the following results are obtained which are depicted in Figure 3.
Where the Euler angles are α = −1.5708, β = 0.6701, γ = 1.5465 and its semi-axes are α1 = 4.2002,

α2 = 3.5004 and α3 = 2.9962.
Special thanks to PhD student G. Kounadis for his help with the numerical example.
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Figure 3. Reconstruction of an ellipsoid using far-field data.

6. CONCLUSION

In the preceding work, the theoretical results concerning a method for solving an inverse electromagnetic
scattering problem for the cases of an impedance or a dielectric ellipsoid are presented. In particular,
using six measurements of the leading order low-frequency coefficient of the electric far-field pattern, a
measurement matrix is constructed whose eigenvalues and eigenvectors are used to specify the size and
orientation of the unknown ellipsoid, respectively. Finally, a numerical example is presented. Therefore,
the presented method can lead to an efficient algorithm.

APPENDIX A.
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