Vol. 83
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-29
CS-Based HRRP Extraction Method for through -Wall Detection
By
Progress In Electromagnetics Research M, Vol. 83, 109-119, 2019
Abstract
Feature extraction is of significant importance for final results of the through-wall detection procedure. High resolution range profile (HRRP) is related to target reflectivity coefficients which can be used as a new feature for object detection. Compressive sensing (CS) is an emerging technique which enables a sparse signal to be recovered using much fewer measurements. This method can provide a novel way for achieving the HRRP since the target reflectivity coefficients are often known to be sparsely distributed in range cells. In this paper, after a set of input-output patterns that consist of target position and HRRP are obtained, through-wall detection problem is reformulated into a nonlinear regression one, which can be solved by support vector machine (SVM). Numerical simulations demonstrate that the prediction accuracy of target position is related to the number of range cells, the number of observations, and signal-to-noise ratio (SNR). Furthermore, the proposed method performs better than the one using signal amplitude as a feature in terms of smaller estimation error and shows better robustness against noise.
Citation
Fang-Fang Wang, and Tingting Qin, "CS-Based HRRP Extraction Method for through -Wall Detection," Progress In Electromagnetics Research M, Vol. 83, 109-119, 2019.
doi:10.2528/PIERM19042603
References

1. Sun, S., B. J. Kooij, and A. G. Yarovoy, "Linearized 3-D electromagnetic contrast source inversion and its applications to half-space configurations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 3475-3487, Jun. 2017.
doi:10.1109/TGRS.2017.2672861

2. Lu, B. Y., Q. Song, Z. M. Zhou, and X. Zhang, "Detection of human beings in motion behind the wall using SAR interferogram," IEEE Geoscience and Remote Sensing Letters, Vol. 9, 968-971, Sep. 2012.
doi:10.1109/LGRS.2012.2187428

3. Li, H. Q., G. L. Cui, L. J. Kong, G. H. Chen, M. Y. Wang, and S. S. Guo, "Robust human targets tracking for MIMO through-wall radar via multi-algorithm fusion," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 12, 1154-1164, Apr. 2019.
doi:10.1109/JSTARS.2019.2901262

4. Guo, S. S., G. L. Cui, L. J. Kong, and X. B. Yang, "An imaging dictionary based multipath suppression algorithm for through-wall radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, 269-283, Feb. 2018.
doi:10.1109/TAES.2017.2756298

5. Qu, L. L., X. Cheng, Y. P. Sun, and T. H. Yang, "Compressive sensing-based two-dimensional diffraction tomographic algorithm for through-the-wall radar imaging," 2018 Progress In Electromagnetics Research Symposium (PIERS - Toyama), 2384-2388, Japan, Aug. 1-4, 2018.

6. Wang, F. F., Y. R. Zhang, and H. M. Zhang, "Joint wall clutter mitigation and data-driven model for through-wall detection," International Journal of Remote Sensing, Vol. 37, 4486-4499, 2016.
doi:10.1080/01431161.2016.1213924

7. Wang, F. F., Y. R. Zhang, and H. M. Zhang, "Through-wall detection with LS-SVMunder unknown wall characteristics," International Journal of Antennas and Propagation, 2016.

8. Du, L., P. H. Wang, H. W. Liu, M. Pan, F. Chen, and Z. Bao, "Bayesian spatiotemporal multitask learning for radar HRRP target recognition," IEEE Transactions on Signal Processing, Vol. 59, 3182-3196, Jul. 2011.
doi:10.1109/TSP.2011.2141664

9. Du, C., B. Chen, B. Xu, D. D. Guo, and H. W. Liu, "Factorized discriminative conditional variational auto-encoder for radar HRRP target recognition," Signal Processing, Vol. 158, 176-189, May 2019.
doi:10.1016/j.sigpro.2019.01.006

10. Zheng, C., G. Li, X. G. Xia, and X. Wang, "Weighted l(2,1) minimisation for high resolution range profile with stepped frequency radar," Electronics Letters, Vol. 48, 1155-U190, Aug. 30, 2012.
doi:10.1049/el.2012.1382

11. Li, H. T., C. Y. Wang, K. Wang, Y. P. He, and X. H. Zhu, "High resolution range profile of compressive sensing radar with low computational complexity," IET Radar Sonar and Navigation, Vol. 9, 984-990, Oct. 2015.
doi:10.1049/iet-rsn.2014.0454

12. Yang, L., L. F. Zhao, S. Zhou, and G. A. Bi, "Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric Bayesian learning," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, 1443-1455, Apr. 2017.
doi:10.1109/JSTARS.2016.2611005

13. Baraniuk, R. G., "Compressive sensing," IEEE Signal Processing Magazine, Vol. 24, 118, Jul. 2007.
doi:10.1109/MSP.2007.4286571

14. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, 21-30, Mar. 2008.
doi:10.1109/MSP.2007.914731

15. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, 4655-4666, Dec. 2007.
doi:10.1109/TIT.2007.909108