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CS-Based HRRP Extraction Method for Through-Wall Detection

Fangfang Wang1, 2, * and Tingting Qin1

Abstract—Feature extraction is of significant importance for final results of the through-wall detection
procedure. High resolution range profile (HRRP) is related to target reflectivity coefficients which can
be used as a new feature for object detection. Compressive sensing (CS) is an emerging technique which
enables a sparse signal to be recovered using much fewer measurements. This method can provide a
novel way for achieving the HRRP since the target reflectivity coefficients are often known to be sparsely
distributed in range cells. In this paper, after a set of input-output patterns that consist of target position
and HRRP are obtained, through-wall detection problem is reformulated into a nonlinear regression one,
which can be solved by support vector machine (SVM). Numerical simulations demonstrate that the
prediction accuracy of target position is related to the number of range cells, the number of observations,
and signal-to-noise ratio (SNR). Furthermore, the proposed method performs better than the one using
signal amplitude as a feature in terms of smaller estimation error and shows better robustness against
noise.

1. INTRODUCTION

Sensing through opaque medium obstacles such as walls and ground using ultra-wideband (UWB) signals
is emerging as a powerful technology to support a variety of civilian and military applications [1]. Thus,
through-wall detection is a research field of remote sensing which has many important applications in
rescue and security [2].

There are several challenges in detecting objects behind a wall compared to the detection problem
in free space. The main challenge in through-wall detection comes from the presence of the wall [3–5].
In addition, wall characteristics such as width, permittivity, and conductivity are unknown in most
applications, which is another challenge for through-wall detection. Data-driven modelling (DDM) is
a new approach in the area of machine learning which is based on analyzing the data about a system.
Data-driven model is a good alternative to physics-based model for this problem when multiple data
pairs containing the sensor output and the required object parameters are available. The characteristic
of this DDM approach is its ability to capture the explicit knowledge of the physical behavior of the
system.

Through-wall detection accuracy based on DDM is closely related to the feature that is extracted
from the sensor output. Usually, the target signal received at each receiver antenna position of synthetic
aperture radar (SAR) is not suitable for being treated as the feature directly even after wall clutter
removal since it will lead to large amount of data. In order to alleviate processing bottleneck of high-
speed data acquisition, storing, and transmission, it is inevitable to extract some statistical features
(such as mean and variance) of the target signal received at each receiver antenna position. However,
the statistical feature is an approximated one which will lose some information representing target
characteristic. Besides, the amplitude of the target signal is also extracted as the feature. In [6, 7],
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a vector containing the largest amplitude of the signal received at each receiver antenna position is
considered as an input of the support vector machine (SVM) model, and the target position is the
output. However, this feature still cannot represent all characteristics of the target. To overcome these
limitations, an alternative and innovative feature should be extracted for through-wall detection with
high fidelity.

High resolution range profile (HRRP) is a feature which is successfully used in the classification
and recognition of large targets (ships, aircraft, etc.) [8, 9]. HRRP represents the projection of target
scattering centers on radar line of sight, and it is the coherent summation of complex echoes from target
scatters in each range cell. HRRP contains the detailed target structure information, such as strength,
size, and characteristic distribution of the target. Recent researches on SAR imaging show that the
sparse reconstruction can achieve an HRRP with fewer pulses [10, 11]. Sparse representation is a signal
processing technique that takes advantage of signal’s sparsity, allowing signal to be recovered from a
limited number of measurements with high probability by solving a convex optimization problem [12].
Compressive sensing (CS), a new branch of the sparse signal processing method, provides an efficient
way of HRRP reconstruction with high accuracy and low side-lobe using far fewer observations [13, 14].
Therefore, CS provides a novel method for HRRP extraction.

In this paper, we first exploit CS theory to reconstruct the target’s HRRP. With regard to the
spatial sparsity of the radar scene, HRRP can be recovered even when the radar measurements are
fewer. Experiment results show that HRRP can capture the important properties of radar returns.
Then, a data-driven model is built up for through-wall detection with the knowledge of input and
output pairs. Specifically, HRRP is treated as input and target’s position as output. In this framework,
through-wall detection is cast into a regression one which is solved by SVM.

The remainder of this paper is organized as follows. Section 2 firstly presents the signal model,
and then CS is applied to extract the HRRP feature. After obtaining the pairs that consists of the
target position and corresponding HRRP, through-wall detection problem can be recast as a regression
one which is solved using SVM. In Section 3, numerical results for synthetic data are shown, and the
performance of the proposed method is assessed in terms of accuracy, robustness, and compared with
other methods. Finally, some conclusions and final remarks are made.

2. HRRP BASED THROUGH-WALL LOCALIZATION

2.1. Signal Model

Assume that N is the number of transceiver antenna positions and that M is the number of time
samples at each antenna position. The transmitted waveform at each transceiver antenna position is a
sinusoidal modulated Gaussian pulse, which is given by

E(t) = sin(2πf0t) exp
[
−4π(t0 − t)2

τ2

]
(1)

here f0 is the center frequency; the peak of the excitation pulse appears at t0; and its spread is τ .
Therefore, the mth sample of the target signal (after clutter suppression) at the nth antenna position
from P targets can be expressed as

y(n,m) =
P∑

p=1

σp sin(2πf0(tm − 2rn,p/c)) exp
[
−4π(t0 − (tm − 2rn,p/c))2

τ2

]
(2)

where σp is the reflectivity coefficient of the pth target, rn,p the range for the signal to travel between
the nth antenna position and the pth target, and c the speed of light.

2.2. Feature Extraction

CS has brought a new paradigm in recovering a signal from lower dimensional measurements. In the
application of CS, the signal is demanded to be sparse. In this paper, CS is applied to perform feature
extraction of the target signal received at each transceiver antenna position separately. Assume that
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yn ∈ RM×1 is the target signal received at the nth transceiver antenna position which can be illustrated
as

yn = [y(n, 1), y(n, 2), . . . , y(n,M)]T (3)
and θn ∈ RI×1 is the HRRP at the nth transceiver antenna position

θn = [θn,1, θn,2, . . . , θn,I ]T (4)
where

θn,i =
{

σp ri = rn,p

0 otherwise
i = 1, 2, . . . , I, p = 1, 2, . . . , P (5)

Here, the target scene is divided into I (I = �rw/Δr�) range cells, where ri ∈ {iΔr|i = 1, 2, . . . , I}
represents the ith range cell, and �·� is the ceiling function. It should be noted that rw is the maximum
range that we are interested in, and Δr is the range resolution.

Then, the relationship between the target signal yn and the HRRP θn is given by
yn = Ψθn (6)

where Ψ is an M × I matrix whose (j, i)th element is

[Ψ]ji = sin(2πf0(tj − 2ri/c)) exp
[
−4π(t0 − (tj − 2ri/c))2

τ2

]
(7)

Note that HRRP θn(n = 1, . . . , N) at each transceiver antenna position is different due to the diversity of
the relative distance from the transceiver antenna position to the range cell position. In CS applications,
the lower dimensional measurement ỹn ∈ RQ×1 is acquired. The relation between the target signal yn

and the measurement ỹn is expressed as
ỹn = Φyn = ΦΨθn (8)

where Φ is a Q×M measurement matrix. Note that Φ can be the same or different at each transceiver
antenna position. The product of the measurement matrix Φ and dictionary Ψ is denoted as

A = ΦΨ (9)
where A is a Q × I matrix called sensing matrix.

The sparse HRRP θn can be recovered from the solution of the following optimization problem
θ̂n = arg min ||θn||1s.t.Aθn = ỹn (10)

where || · ||1 is l1 − norm such that ||θn||1 =
∑

i |θn,i|. The problem given in Eq. (10) can be solved
using orthogonal matching pursuit (OMP) [15]. The algorithm of OMP is shown below, and here αi is
an atom of A.

Input:
• Q × I sensing matrix A
• Q-dimensional data vector ỹn

• The sparsity level k of the signal
Output:

• An estimate θ̂n ∈ RI×1 for the signal
Procedure:

1) Initialize the residual r0 = ỹn, the index set Λ0 = ∅, the sensing matrix A0 = ∅, and the iteration
step t = 1.

2) Find the index λt that solves the following optimization problem
λt = arg max

j=1,2,...,I
|〈rt−1,αj〉| (11)

3) Augment the index set and the matrix of the chosen atom: Λt = Λt−1 ∪ {λt} and At = [At−1αλt ].
4) Solve a least square problem to obtain a new signal estimation:

θ̂n,t = arg min
θt

‖ỹn − Atθt‖2 = (AT
t At)−1AT

t ỹn (12)

5) Calculate the new residual
rt = ỹn − Atθ̂n,t = ỹn − At(AT

t At)−1AT
t ỹn (13)

6) Increase t, and return to Step 2 if t < k.
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2.3. Support Vector Machine

Support vector machines are supervised learning models with associated algorithms that analyze
database on the idea of structural risk minimization. More formally, an SVM constructs a hyper-plane or
set of hyper-planes in a high- or infinite-dimensional space. Usually, SVM can be used for classification,
regression, or other tasks. SVM regression is usually referred to as support vector regression (SVR).

Consider a set of training data {(x1, z1), . . . , (xl, zl)} ⊂ RN×R is given, where RN denotes the space
of input patterns. The idea of the regression problem is to determine a function that can approximate
output values accurately. Therefore, we begin with describing the case of linear function f , which takes
the form

z = f(x) = 〈w,x〉 + b with w ∈ RN , b ∈ R (14)

where 〈·, ·〉 represents the dot product in RN , and w and b are unknown parameters obtained by
minimizing the regression risk. One way to achieve minimal regression risk is to minimize the Euclidean
norm ‖w‖2. Then, the problem in Eq. (14) can be written as a convex optimization one:

min
1
2
‖w‖2

s.t

{
zi − 〈w,xi〉 − b ≤ ε

〈w,xi〉 + b − zi ≤ ε

(15)

where ε is the precision of function f approximating all pairs of data (xi, zi).
Sometimes, some errors need to be allowed. We can introduce slack variables ξi, ξ∗i to deal with

the infeasible constraints of the optimization problem in Eq. (15). Then, the problem can be treated as
follows

min
1
2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

s.t

⎧⎨
⎩

zi − 〈w,xi〉 − b ≤ ε + ξi

〈w,xi〉 + b − zi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(16)

The constant C > 0 is a tradeoff between the flatness of f and the amount of deviation allowed to be
greater than ε. When the difference between the actual and estimated values is less than ε, it will be
ignored. This formulation above can solve the problem of ε-insensitive loss function, taking the form

c(f(x) − z) =
{

0 if |f(x) − z| ≤ ε
|f(x) − z| − ε otherwise (17)

Since the relationship between the input and output is nonlinear, it can be implemented by
transforming the training pattern xi into some feature space F , where there is a linear relationship
between the input and output:

φ : RN → F
x → φ(x) (18)

The SVM algorithm relies on dot products between patterns xi, so the kernel function k(x,x′) =
〈φ(x), φ(x′)〉 is considered instead of φ to simplify the algorithm. To solve the above simplified
optimization problem, we usually convert the primal problem to its dual one described as follows

maximize

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1
2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )k(xi,xj)

−ε

l∑
i=1

(αi + α∗
i ) +

l∑
i=1

zi(αi − α∗
i )

subject to
l∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

(19)
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The Lagrange multipliers α and α∗ are calculated by solving the constrained quadratic programming
problem (CQP). Then, function f can be given approximately by f̃ :

f̃(x) =
Nsv∑
n=1

(αn − α∗
n)k(xn,x) + b (20)

where xn is the training pattern whose Lagrange multiplier is non-zero. This type of training pattern
is called support vector (SV), and Nsv is the number of SVs.

In SVR, the kernel function is chosen as the Gaussian kernel and given by

k(xi,xj) = exp(−γ ‖xi − xj‖2) (21)

where γ is the variance of the kernel function. Before performing the SVR, some parameters such as C
and γ need to be determined, which are adjusted using cross-validation during the training phase.

In the proposed method, x represents the HRRP feature extracted from target backscattered signal,
and z represents the x-coordinate or y-coordinate of the target position. After obtaining a set of pairs of
x and z, a nonlinear model between them can be achieved by training the dataset using SVR. Then, the
position of the target is predicted through this nonlinear model. The whole procedure of the proposed
method is shown in Fig. 1. In step 1, CS is applied to perform feature extraction of the target return
received at each transceiver antenna position separately. In step 2, target detection is performed by
using SVR model to predict the position of the target.

Figure 1. Procedure of the proposed method.
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3. SIMULATION AND RESULTS

3.1. Simulation Model

In this section, the direct electromagnetic scattering is simulated to collect data. Fig. 2 shows the
general situation of a metal target residing in a room with investigation domain D = [−1.13, 1.13] ×
[0.20, 3.70]m2. The thickness, conductivity σ, and relative dielectric constant εr of the walls are 0.15m,
0.003 S/m, and 7.66, respectively. The permeability of the walls is equal to μ0. SAR system is commonly
used in through-wall imaging and detection. The transceiver TX/RX is 0.05m away from the front wall
and moves parallel to the wall to synthesize an aperture. The number of antenna positions is N = 61.
The first antenna position is (−1.2, 0) m, and the distance d between adjacent antenna positions is
0.04m. The number of time samples at each antenna position is M = 2000. The electromagnetic
field is obtained by performing finite difference time domain (FDTD) simulation. In FDTD simulation,
the transmitted waveform at each antenna position is a sinusoidal modulated Gaussian pulse with a
frequency of 2GHz. The peak of the excitation pulse appears at t0 = 1.125 ns, and the spread of it is
τ = 1.125 ns.

Figure 2. Simulation model of through-wall detection.

The original SAR data contain target echoes and wall reflections representing the main clutter
source. For through-wall target detection, the target information is included in the target echo. In
the following, signal yn refers to the one achieved by subtracting the background at the nth antenna
position. The B-scan and A-scan of the target echo are shown in Fig. 3. Specifically, Fig. 3(a) exhibits
the B-scan image of the target echo in which the target echo is marked out with a rectangle. Here, the
target is located at (0.03, 0.70) m. Fig. 3(b) shows the A-scan signal y31 received at the 31th antenna
position, which is marked with a black line in Fig. 3(a).

3.2. Feature Extraction and Target Detection

In the first part of this section, each sparse HRRP θn(n = 1, . . . , N) is recovered from the CS
measurement ỹn(n = 1, . . . , N) by solving the optimization problem in Eq. (10). Here, the measurement
matrix Φ at all antenna positions are the same. All the elements are selected from the target signal
yn(n = 1, . . . , N), so the number of observations is Q = M . Assume that the detected scene (at each
antenna position) is divided into I = 91 range cells when the range resolution Δr = c/2B = 0.05 m is
guaranteed. Here, B is the bandwidth of the transmitted signal. The B-scan and A-scan of the sparse
recovered HRRP are shown in Fig. 4. Fig. 4(a) shows the B-scan images of the sparse HRRP at all
antenna positions when the target is located at (0.03, 0.70) m. Here, the HRRP features are marked out
with a red rectangle. Fig. 4(b) shows the A-scan of the sparse HRRP θ31 at the 31th antenna position,
which is marked with a black line in Fig. 4(a). The results demonstrate that the target information for
the target detection is contained in the sparse HRRP.

In the second part of this section, each largest value is extracted from the corresponding recovered
HRRP to constitute a feature vector x ∈ RN , and then target detection is performed by using SVM
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(a) (b)

Figure 3. (a) B-scan image and (b) A-scan signal of the target echo received at the 31th transceiver
antenna position.

(a) (b)

Figure 4. (a) B-scan image and (b) A-scan of the sparse HRRP at the 31th transceiver antenna
position.

model to predict the position of the target. The feature vector x is treated as the input of the SVM
model, and the target position z ∈ R is the output. A training data set TRAIN = {(xi, zi), i =
1, 2, . . . , L} including some input-output patterns is obtained with repeated simulations by changing
the position of the target. Here, L = 11 × 17 denotes the number of assumed target positions. For the
training data set, the positions of the target are changed along the following way:

xn = x0,train + nΔx, n = 0, 1, . . . 10 (22)
ym = y0,train + mΔy, m = 0, 1, . . . 16 (23)

Here, x0,train = −0.97m is the initial x-coordinate of the target position, and y0,train = 0.3m is the
initial y-coordinate of the target position. The spatial intervals in the x-axis and y-axis are Δx = 0.2m
and Δy = 0.2m, respectively. Given the training data set, the SVM model in Eq. (20) is obtained by
solving the dual problem in Eq. (19).

To estimate the prediction accuracy of the SVM model, a test data set TEST = {(xi, zi), i =
1, 2, . . . , L} is generated. For the test data set, the positions of the target are changed in the following
way:

xn = x0,test + nΔx, n = 0, 1, . . . 10 (24)
ym = y0,test + mΔy, m = 0, 1, . . . 16 (25)
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(a) (b)

Figure 5. Predicted values of (a) the horizon and (b) depth of the target location versus the actual
ones.

Here, x0,test = −1.03m and y0,test = 0.4m are the initial x-coordinate and y-coordinate of the target,
respectively. Note that the test data set is different from the training data set since the assumed
positions of the target are different in the two data sets. Firstly, we use the prediction results of horizon
and depth of the target located in the enclosed room to demonstrate the effectiveness of the proposed
method. Since the focus of evaluation is target detection, the constructed SVM model is first used
to assess the degree of matching between the actual position and the predicted position composed of
horizon and depth. The results are shown in Fig. 5, which shows that most of the predicted values are
near the diagonal.

3.3. Analysis and Comparison

In this section, the effect of using different numbers of range cells on the detection accuracy is firstly
analyzed. The number of range cells I is 91, 181, 271, 361, 451, 541, 631, 721, 811, and 901 when we set
the size of range cell Δr = 0.05m, 0.025m, 0.0167m, 0.0125m, 0.01m, 0.0067m, 0.00625m, 0.00556m,
and 0.005m, respectively. The number of observations is still Q = M . In order to evaluate the proposed
method quantitatively, the relative root-mean-square error (RMSE) of the prediction for horizon and

(a) (b)

Figure 6. Prediction error vs. number of range cells for (a) the horizon and (b) depth of the target.
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depth of the target location is defined as

eRMS,x =

√√√√ 1
L

L∑
i=1

(
xi − x̂i

lx

)2

(26)

eRMS,y =

√√√√ 1
L

L∑
i=1

(
yi − ŷi

ly

)2

(27)

Here (xi, yi) is the actual position of the target, and (x̂i, ŷi) is the predicted position of the target.
lx = 2.26m and ly = 3.5 m are the width and length of the room, respectively. The RMSEs versus
different numbers of range cells are plotted in Fig. 6. It is obviously shown that the prediction error
for either horizon or depth of the target decreases as the number of range cells increases. In general,
the RMSE decreases at first and then decays more slowly afterwards. However, it is noted that the
proposed method provides the lowest eRMS,x when the number of range cells is 800 rather than 900
and the lowest eRMS,y when the number of range cells is 500. The reason is that more range cells will
result in a highly correlated sensing matrix in the framework of CS and thus a deteriorated detection
performance.

Moreover, the effect of using different numbers of observations on the detection accuracy is also
analyzed. Assume I = 91 as the number of range cells. Data are measured with 10%, . . . 100% of the
full measurements received at each antenna position randomly. Hence, the number of observations is
Q = 10%M, . . . , Q = 100%M . Each simulation is repeated 100 times, and the average results are
reported in Fig. 7. It can be seen from Figs. 7(a) and (b) that larger number of observations results in
lower RMSE. To achieve higher detection accuracy, e.g., eRMS,x < 0.085 (or eRMS,y < 0.085), at least
50% of full measurement data need to be acquired for the recovery of the HRRP when CS algorithm is
used.

(a) (b)

Figure 7. Prediction error vs. number of observations for (a) the target abscissas and (b) target
ordinates.

Finally, the comparison between the method in which we use amplitude of the target signal as a
feature and the method in which CS is performed to extract HRRP feature is carried out. Meanwhile,
the prediction error with respect to the noise level is analyzed. In this experiment, the number of
observations is set to Q = 40%M and Q = 80%M , and the number of range cells I is set to 91 and 451,
respectively. Each simulation is repeated 100 times, and the average results are illustrated in Fig. 8.
The results also demonstrate that larger number of observations Q (or number of range cells I) will
result in lower RMSE, and the proposed method has smaller RMSE of the prediction. Moreover, the
results indicate that better robustness of the proposed method is obtained with noisy input data.
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(a) (b)

Figure 8. Prediction error vs. SNR for (a) the horizon and (b) depth of the target.

4. CONCLUSION

In this paper, the feature HRRP which is extracted based on CS algorithm is incorporated into an SVM
regression procedure to obtain high accuracy target detection through the wall. Due to the sparsity
of the HRRP, it can be recovered from low dimensional measurements by solving a norm-minimization
problem. Then, target detection is performed by using SVM model to predict the position of the target
with the feature HRRP being treated as input and the target position as output. The results not only
validate the accuracy of the proposed method, but also show its high efficiency. The results demonstrate
that the prediction accuracy of target position is related to the number of range cells, the number of
observations, and SNR. Simulation results also show that the proposed method has smaller RMSE and
better robustness than the one in which signal amplitude is treated as a feature.
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