1. Moffet, A., "Minimum-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 2, 172-175, 1968.
doi:10.1109/TAP.1968.1139138
2. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 573-586, 2011.
doi:10.1109/TSP.2010.2089682
3. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Transactions on Signal Processing, Vol. 63, No. 6, 1377-1390, 2015.
doi:10.1109/TSP.2015.2393838
4. Ren, S. W., W. J. Wang, and Z. H. Chen, "DOA estimation exploiting unified coprime array with multi-period subarrays," 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016.
5. Chen, M., L. Gan, and W. Wang, "Co-prime arrays with reduced sensors (CARS) for direction-of-arrival estimation," 2017 Sensor Signal Processing for Defence Conference (SSPD), London, UK, 2017.
6. Shi, J., G. Hu, X. Zhang, and Y. Xiao, "Symmetric sum coarray based co-prime MIMO configuration for direction of arrival estimation," AEU --- International Journal of Electronics and Communications, Vol. 94, 339-347, 2018.
doi:10.1016/j.aeue.2018.07.022
7. Shi, J., G. Hu, and X. Zhang, "Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom," IEEE Sensors Journal, Vol. 18, No. 3, 1203-1212, 2018.
doi:10.1109/JSEN.2017.2782746
8. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167-4181, 2010.
doi:10.1109/TSP.2010.2049264
9. Yang, M., A. M. Haimovich, and B. Chen, "A new array geometry for DOA estimation with enhanced degrees of freedom," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, 3041-3045, Shanghai, China, 2016.
doi:10.1109/ICASSP.2016.7472236
10. Yang, M., L. Sun, X. Yuan, and B. Chen, "Improved nested array with hole-free DCA and more degrees of freedom," Electron. Lett., Vol. 52, No. 25, 2068-2070, 2016.
doi:10.1049/el.2016.3197
11. Iizuka, Y. and K. Ichige, "Extension of nested array for large aperture and high degree of freedom," IEICE Communications Express, Vol. 6, No. 6, 381-386, 2017.
doi:10.1587/comex.2017XBL0031
12. Liu, J., Y. Zhang, Y. Lu, S. Ren, and S. Cao, "Augmented nested arrays with enhanced DOF and reduced mutual coupling," IEEE Transactions on Signal Processing, Vol. 65, No. 21, 5549-5563, 2017.
doi:10.1109/TSP.2017.2736493
13. Shi, J., G. Hu, X. Zhang, and H. Zhou, "Generalized nested array: Optimization for degrees of freedom and mutual coupling," IEEE Communications Letters, Vol. 22, No. 6, 1208-1211, 2018.
doi:10.1109/LCOMM.2018.2821672
14. Yang, M., A. M. Haimovich, and X. Yuan, "A unified array geometry composed of multiple identical subarrays with hole-free difference coarrays for underdetermined DOA estimation," IEEE Access, Vol. 6, 14238-14254, 2018.
doi:10.1109/ACCESS.2018.2813313
15. Huang, H., B. Liao, X. Wang, X. Guo, and J. Huang, "A new nested array configuration with increased degrees of freedom," IEEE Access, Vol. 6, 1490-1497, 2018.
doi:10.1109/ACCESS.2017.2779171
16. Liu, S., J. Zhao, D. Wu, and H. Cao, "Grade nested array with increased degrees of freedom for quasi-stationary signals," Progress In Electromagnetics Research LetterS, Vol. 80, 75-82, 2018.
doi:10.2528/PIERL18100604
17. Liu, S., L. Yang, and D. Li, "Subspace extension algorithm for 2D DOAestimation with L-shaped sparse array," Multidimensional Systems & Signal Processing, Vol. 28, 315-327, 2017.
doi:10.1007/s11045-016-0406-3
18. Ahmed, A., Y. D. Zhang, and B. Himed, "Effective nested array design for fourth-order cumulantbased DOA estimation," IEEE Radar Conference, 0998-1002, Seattle, WA, USA, 2017.
19. Zhang, L., S. Ren, and X. Li, "Generalized L-shaped nested array concept based on the fourth-order difference co-array," Sensors, Vol. 18, 8, 2018.
20. Yang, M., L. Sun, X. Yuan, and B. Chen, "A new nested MIMO array with increased degrees of freedom and hole-free difference coarray," IEEE Signal Processing Letters, Vol. 25, No. 1, 40-44, 2018.
doi:10.1109/LSP.2017.2766294
21. Liu, Q., B. Wang, X. Li, J. Tian, T. Cheng, and S. Liu, "An optimizing nested MIMO array with hole-free difference coarray," MATEC Web of Conferences, Vol. 232, EDP Sciences, 2018.
22. Morabito, A. F. and P. G. Nicolaci, "Optimal synthesis of shaped beams through concentric ring isophoric sparse arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 979-982, 2017.
doi:10.1109/LAWP.2016.2615762
23. Pal, P. and P. P. Vaidyanathan, "Coprime sampling and the MUSIC algorithm," Proceedings of Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), 289-294, Sedona, AZ, USA, 2011.
24. Gu, J. F., P. Wei, and H. M. Tai, "2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix," Signal Processing, Vol. 88, 75-85, 2008.
doi:10.1016/j.sigpro.2007.07.013
25. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830
26. Richard, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acous, Speech, and Signal Process., Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276