
Progress In Electromagnetics Research B, Vol. 84, 135–151, 2019

Triple Two-Level Nested Array with Improved Degrees of Freedom

Sheng Liu1, Qiaoge Liu2, Jing Zhao1, *, and Ziqing Yuan1

Abstract—A triple two-level nested array (TTNA) configuration is proposed for direction-of-arrival
(DOA) estimation of multiple time-space signals. The proposed TTNA consists of multiple two-level
nested arrays, and the distance between two adjacent nested arrays is also given according to a nested
array. As traditional nested arrays, it can generate a hole-free different co-array. Compared with some
preexisting nested arrays, the proposed nested array can offer more degrees of freedom (DOFs). The
closed-form expression of DOFs and the array configuration are given. Moreover, the detailed process
for the construction of extended covariance matrix also is obtained. The simulation results show that the
proposed method offers improved performance in the precision of DOA estimation due to the increase
of virtual sensors.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of multiple time-space signals based on antenna array has got a lot
of attention because of its widespread application in wireless communication and multiple input multiple
output (MIMO) radar system. Different from the uniform linear array (ULA), the inter-element spacing
of sparse arrays can be variable and larger than the half wavelength of incident signal. Exploiting the
location difference between two sensors, more virtual sensors can be obtained from sparse linear arrays.
Hence sparse linear array can offer higher degrees of freedom (DOFs) than ULA. Minimum-redundancy
array (MRA) [1] is one of the earliest sparse linear arrays, and its difference co-array (DCA) can be
seen as a ULA with the most possible consecutive virtual sensors. So, for the same number of sensors,
MRA can provide more DOFs than any other sparse array configurations. However, it is difficult to
obtain the specific array configuration of MRA as the number of the sensors is larger.

Recently, two kinds of sparse linear arrays, called as co-prime arrays [2–7] and nested arrays [8–
21], have gained wide attention. In addition, concentric-ring isophoric sparse array [22] is another
important array structure which is used widely for optimal power synthesis of beams. The original
co-prime array [2] consists of an M -element uniform linear array with the inter-element spacing being
N units and an N -element uniform linear array with the inter-element spacing being M units, where M
and N are two given co-prime positive integers. Toward improving the performance of co-prime array,
many modified co-prime arrays including generalized co-prime array [3], multi-period co-prime array [4],
and reduced-sensors co-prime array [5] have been proposed. In addition, some co-prime MIMO radar
configurations [6, 7] have also been presented based on the co-prime array. The attractive advantage
of co-prime array is shown in reducing the mutual coupling between sensors. However, compared with
MRA and nested array, co-prime array shows a distinct disadvantage in DOFs.

Two-level nested array (TNA) was firstly developed in [8]. Original TNA is constructed by an M -
element uniform linear array with the inter-element spacing being one unit and an N -element uniform
linear array with the inter-element spacing being M units, where M and N are two given positive
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integers. TNA has more DOFs than co-prime arrays and simpler structure than MRA. Hence, TNA
has been improved constantly and used widely since it was proposed. Combining the construction of
TNA with RMA, the nested MRA [9] was proposed. Since this array consists of multiple RMAs, it
is still difficult to get the array configuration for larger number of sensors. In [10, 11], two kinds of
improved TNA configurations have been proposed by adjusting the inter-element spacing of the second
uniform linear array. The nested array [11] can provide 2 more DOFs than the TNA [8], and the
nested array [10] can provide L-2 or L-3 more DOFs than the TNA [8], where L is the number of
sensors. Moving part sensors from the first sub-array to construct the third sub-array, an augmented
nested array has been proposed in [12]. It can offer the same number of DOFs as the nested array [10],
while reducing the mutual coupling between sensors. The generalized nested array presented in [13]
can also work for reducing mutual coupling, but it cannot increase the DOFs. In [14], the authors used
many preexisting arrays to construct some new sparse arrays including a double two-level nested array
(DTNA) construction. Compared with the nested arrays in [8, 10–13], the nested arrays in [15, 16] can
offer more DOFs. However, the two kinds of nested arrays show advantages only in the DOA estimation
of periodic stationary signals because of the existence of “holes”. In addition to this, many other types
of arrays have been proposed based on nested array, such as L-shaped nested array [17], nested arrays
based on fourth-order cumulant [18, 19], and nested MIMO radars [20, 21].

In this paper, we present a hole-free nested array called triple two-level nested array (TTNA). The
proposed nested array consists of multiple nested arrays [10], and it can offer more DOFs than some
preexisting multiple nested arrays. For many preexisting nested arrays, the authors have given general
expressions of the array configurations, but they did not give the closed-form method to construct the
extended covariance matrix. Compared with these arrays, another contribution of this work is that we
have given a detailed process to construct extended covariance matrix.
Notation: [•]T , [•]∗, [•]H̄ , and E[•] indicate transpose, conjugate, conjugate transpose, and statistical
expectation, respectively. |L| denotes the number of elements in set L. Min{L} and Max{L} stand for
the minimum and maximum of set L, respectively. vec(R) represents the vectorization of matrix R,
and J denotes a matrix with 1 on the back diagonal and 0 on other positions.

2. THE RECEIVED DATA MODEL

Suppose that K narrowband, uncorrelated and far-field signals impinge on an L-element linear array, and
θk, k = 1, 2, 3, · · · ,K is the DOA of the kth signal. Denoting dl, l = 2, 3, · · · , L as the distance between
the lth sensor and the reference sensor, the received data vector x(t) = [x1(t), x2(t), · · · , xL(t)]T ∈ CL×1

is presented as
x(t) = As(t) + n(t) (1)

where A = [a(θ1),a(θ2), · · · ,a(θK)] ∈ CL×K is the array manifold matrix with a(θk) =
[1, e−i 2π

λ
d2 sin(θk), · · · , e−i 2π

λ
dL sin(θk)]T ∈ CL×1 and λ being the wavelength. s(t) = [s1(t), s2(t), · · · , sK(t)]T

∈ CK×1 indicates the signal vector, and n(t) ∈ CL×1 represents the noise vector.

3. CONSTRUCTION OFTTNA

In order to avoid direction ambiguity caused by the proposed sparse array in DOA estimation process,
we denote d = λ/2 as the unit inter-element spacing of nested array [10]. Firstly, we construct an
NM -element double two-level nested array (DTNA) by using NM -element nested arrays [10], and the
configuration is shown in Fig. 1. For convenient expression, we call the nested array [10] as fundamental
nested array (FNA). Place the N FNAs discretely in a line, and make the N first sensors to construct a
large-interval nested array (LNA) with the similar construction as FNA. However, the unit inter-element
spacing of the LNA is Dd, where D is the DOFs of FNA. Then, we construct the HNM -element triple
two-level nested array (TTNA) by using H NM -element DTNAs, whose the configuration is also shown
in Fig. 1. As the DTNA, we place the H DTNAs discretely in a line and make H first sensors to
construct a super large-interval nested array (SLNA) with a similar construction as FNA [10]. However,
the unit inter-element spacing of the SLNA is D1d, where D1 is the DOFs of DTNA.
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FNA

DTNA

TTNA

0 1 2 M  - 1 2M 3M  + 1 M  M  + M  - 2 M  M  + M - 2

The 1st FNA

1 1 1 1 2 2 1 2

The 2nd FNA The 3rd FNA The N th FNA The (N  + 1)th FNA The (N  + 2)th FNA The (N - 1)th FNA1 The Nth FNA1 1

0 D 2D (N  - 1)D 2N D (3N  + 1)D (N N  + N  - 2)D (N N  + N - 2)D1 1 1 1 2 2 1 2

The 1st DTNA The 2nd DTNA The 3rd DTNA The H th DTNA The (H  + 1)th DTNA The (H  + 2)th DTNA The (H - 1)th DTNA1 The Hth DTNA1 1

0 D 2D (H  - 1)D 2H D (3H  + 1)D (H H + H  - 2)D (H H  + H - 2)D1 1 1 1 2 2 1 21 1 1 1 1 1 1

Figure 1. Construction of DTNA and TTNA.

Table 1. Positions of a 96-element TTNA (M = 4, N = 4, H = 6).

The 1st FNA The 2nd FNA The 3rd FNA The 4th FNA

The 1st DTNA 0, 1, 4, 6 13, 14, 17, 19 52, 53, 56, 58 78, 79, 82, 84

The 2nd DTNA 169, 170, 173, 175 182, 183, 186, 188 221, 222, 225, 227 247, 248, 251, 253

The 3rd DTNA 338, 339, 342, 344 351, 352, 355, 357 390, 391, 394, 396 416, 417, 420, 422

The 4th DTNA 1014, 1015, 1018, 1020 1027, 1028, 1031, 1033 1066, 1067, 1070, 1072 1092, 1093, 1096, 1098

The 5th DTNA 1690, 1691, 1694, 1696 1703, 1704, 1707, 1709 1742, 1743, 1746, 1748 1768, 1769, 1772, 1774

The 6th DTNA 2197, 2198, 2201, 2203 2210, 2211, 2214, 2216 2249, 2250, 2252, 2540 2275, 2276, 2279, 2281

Here we consider that the FNA consists of an M1-element uniform array and an M2-element sparse
array, where M1 + M2 = M . The LNA consists of an N1-element large-interval uniform array and an
N2-element large-interval sparse array, where N1 +N2 = N . The SLNA consists of an H1-element super
large-interval uniform array and an H2-element superlarge-interval sparse array, where H1 + H2 = H.
For given M , N , and H, the optimal M1, M2, N1, N2 and H1, H2 can be obtained as [10]. Taking a
96-element TTNA (M = 4, N = 4, H = 6) as example, the positions of this TTNA are depicted in
Table 1.
Remark 1: It should be clear that the authors consider the (M1 + M2)-element nested array as an
(M1−1)-element uniform array, M2-element large-interval uniform array, and an isolated sensor in [10].
We use the new description only for the convenience of expression in the following page. In addition, the
DTNA is first proposed by Yang et al. in [14], but the DTNA [14] consists of multiple nested arrays [8].
In [21], the authors have proposed a nested MIMO array, whose equivalent array construction is the
same as the DTNA in Fig. 1.

According to the construction of TTNA, the positions of the nth FNA in the hth DTNA are
denoted by {

dah
n,m/m = 1, 2, · · · ,M

}
(2)

where dah
n,m is the location of the mth sensor in the nth FNA of the hth DTNA.

The expression of a1
n,m can be given by

a1
n,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m − 1) + D(n − 1), when m ≤ M1, n ≤ N1

M1m − M2
1 + m − 1 + D(n − 1), when M1 < m < M, n ≤ N1

M2M1 + M − 2 + D(n − 1), when m = M, n ≤ N1

(m − 1) + D(N1n − N2
1 + n − 1), when m ≤ M1, N1 < n < N

M1m − M2
1 + m − 1 + D(N1n − N2

1 + n − 1), when M1 < m < M, N1 < n < N

M2M1 + M − 2 + D(N1n − N2
1 + n − 1), when m = M, N1 < n < N

(m − 1) + D(N2N1 + N − 2), when m ≤ M1, n = N

M1m − M2
1 + m − 1 + D(N2N1 + N − 2), when M1 < m < M, n = N

M2M1 + M − 2 + D(N2N1 + N − 2), when m = M, n = N

(3)
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where D = 2M + 2M2M1 − 3, then ah
n,m can be expressed as

ah
n,m =

⎧⎪⎨
⎪⎩

a1
n,m + D1(h − 1), when h ≤ H1

a1
n,m + D1(H1h − H2

1 + h − 1), when H1 < h < H

a1
n,m + D1(H2H1 + H − 2), when h = H

(4)

where D1 is the DOFs of DTNA.
Omitting the symbol of unit inter-element spacing d, we denote the position set of the nth FNA in

the hth DTNA as
Lh

n =
{

ah
n,m/m = 1, 2, · · · ,M

}
(5)

From Eqs. (3)–(5), we can know that

Min
{

Lh
n1

}
− Max

{
Lh

n2

}
> 0 (6)

where n1 > n2.
Denote the nonnegative cross-lap set between the n1th FNA and n2th FNA in the hth DTNA as

Lh
n1,n2

which can be expressed as

Lh
n1,n2

=
{ {

ah
n1m1

− ah
n2m2

/m1 = 1, 2, · · · ,M,m2 = 1, 2, · · · ,M
}

, n1 > n2{
ah

n1m1
− ah

n2m2
/m1 = 1, 2, · · · ,M,m2 = 1, 2, · · · ,M,m1 ≥ m2

}
, n1 = n2

(7)

Then, the nonnegative self-lap set of the hth DTNA can be described as

Lh =

( ⋃
n1>n2

Lh
n1,n2

)⋃
Lh

n,n (8)

where n is an arbitrary integer from 1 to N .
Denote the nonnegative cross-lap set between the h1th DTNA and h2th DTNA as Lh1,h2 which

can be expressed as

Lh1,h2 =
{ {

ah1
n1m1

− ah2
n2m2

/m1,m2 = 1, 2, · · · ,M ; n1, n2 = 1, 2, · · · , N
}

, when h1 > h2

Lh1, when h1 = h2
(9)

Then, the nonnegative lap set of TTNA can be described as

L =

⎛
⎝ ⋃

h1>h2

Lh1,h2

⎞
⎠⋃Lh (10)

where h is an arbitrary integer from 1 to H.
In order to get the DOFs of the proposed TTNA and drive the detailed process for constructing

covariance matrix, we generalize the properties of Lh
n1,n2

, Lh and L, which can be listed as follows.

Proposition 1 : As n1 > n2, following descriptions hold for the cross-lap set Lh
n1,n2

.

(a) Lh
n1,n2

contains all the contiguous integers from Min{Lh
n1,n2

} to Max{Lh
n1,n2

}.
(b)

∣∣Lh
n1,n2

∣∣ = 2M + 2M2M1 − 3 = D.
The proof can be found in Appendix A.

Proposition 2 : Lh contains all the contiguous integers from Min{Lh} to Max{Lh}, where Min{Lh} = 0
and Max{Lh} = [N + N1N2 − 2][2M − 3 + 2M2M1] + M + M2M1 − 2.

The proof can be found in Appendix B.
Proposition 3 : L contains all the contiguous integers from Min{L} to Max{L}, where Min{L} = 0
and Max{L} = (D1 − 1)/2 + D1(H + H2H1 − 2), where D1 = [2N + 2N1N2 − 3][2M + 2M2M1 − 3].

The proof can be found in Appendix C.
According to Proposition 3 and the symmetry of laps, we can know that the negative lap set L−

contains all the contiguous integers from −[(D1 − 1)/2 + D1(H + H2H1 − 2)] to −1. Then, it is easy to
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Table 2. DOFs of three multiple-nested array configurations.

Number of
sensors

Proposed TTNA DTNA DTNA [14]

64 2197 (M = 4, N = 4, H = 4) 2025 (M = 8, N = 8) 1521 (M = 8, N = 8)
80 3211 (M = 4, N = 4, H = 5) 3015 (M = 8, N = 10) 2301 (M = 8, N = 10)
96 4563 (M = 4, N = 4, H = 6) 4185 (M = 8, N = 12) 3237 (M = 8, N = 12)
100 4693 (M = 4, N = 5, H = 5) 4489 (M = 10, N = 10) 3481 (M = 10, N = 10)
112 5915 (M = 4, N = 4, H = 7) 5915 (M = 8, N = 14) 4329 (M = 8, N = 14)
120 6669 (M = 4, N = 5, H = 6) 6231 (M = 10, N = 12) 4897 (M = 10, N = 12)
125 6859 (M = 5, N = 5, H = 5) 6821 (M = 5, N = 25) 5729 (M = 5, N = 25)
150 9747 (M = 5, N = 5, H = 6) 9313 (M = 10, N = 15) 7493 (M = 10, N = 15)

obtain that the DOFs of TTNA are D1(2H + 2H2H1 − 3). Table 2 shows the DOFs of three multiple-
nested arrays under different numbers of sensors. From Table 2, we can see clearly that the proposed
multiple-nested array can provide more DOFs than DTNA [14] and DTNA.
Remark 2: We must notice that the number of sensors in nested array [10] is no less than 4. Hence,
the number of sensors in proposed TTNA should be written as the product of three integers greater
than 4. Just for this case, we only give the expression of DOFs on certain number of sensors, such as
64, 80, and 96. When the number of sensors is smaller than 64, we can see the DTNA as the particular
TTNA with H = 1. DOFs of five nested arrays with small number of sensors are listed in Table 3.

Table 3. DOFs of five nested array configurations.

Number of
sensors

TNA [8]
Nested

array [11]
Nested array [12]

(ANAI-1)
Nested

array [10]
DTNA

16 143 145 157 157 169 (M = 4, N = 4)
20 219 221 237 237 247 (M = 4, N = 5)
24 297 299 319 319 351 (M = 4, N = 6)
25 337 339 359 359 361 (M = 5, N = 5)
28 419 421 445 445 455 (M = 4, N = 7)
30 479 481 507 507 513 (M = 5, N = 6)
32 545 547 575 575 585 (M = 4, N = 8)

4. CONSTRUCTION OF EXTENDED COVARIANCE MATRIX

Constructing extended covariance matrix is the key point to increase the potential DOFs of a sparse
array. Spatial smoothing (SS) [23, 24] is a well-known technique to construct an extended full-rank
covariance matrix. The principle of SS algorithm is briefly introduced as follows.

Denote the conventional covariance matrix Rxx = E{xxH̄}, where x is the received data vector
described in Eq. (1). Then we can obtain a vector z = vec(Rxx). Picking out all the consecutive lags
samples of z, then we can construct a new vector znew. Suppose that the length of znew is 2Lε + 1, and
two kinds of extended covariance matrix can be constructed as [23, 24], respectively

R′
xx =

1
Lε + 1

Lε+1∑
i=1

znew(Lε + 2 − i : 2Lε + 2 − i)zH
new(Lε + 2 − i : 2Lε + 2 − i)) (11)

or
R′′

xx = [ znew(Lε + 1 : 2Lε + 1) znew(Lε : 2Lε) · · · znew(1 : Lε + 1) ] (12)
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where znew(Lε + 2 − i : 2Lε + 2 − i) stands for a vector composed by the (Lε + 2 − i)th component to
the (2Lε + 2 − i)th component of znew.

Performing EVD of R′
xx or R′′

xx, the DOA can be estimated by the MUSIC [25] or ESPRIT
algorithm [26].

In fact, only Lε + 1 elements are exploited to form the vector znew; therefore, we do not need to
obtain all the elements of vector z. Then, we introduce the detailed process for constructing the vector
znew according to the special structure characteristic of proposed TTNA.

Based on Eq. (1), the received data of the mth sensor in the nth FNA of the hth DTNA can be
expressed as

xh
nm(t) =

[
e−i 2π

λ
dah

m,n sin(θ1) · · · e−i 2π
λ

dah
m,n sin(θK)

]
s(t) + nh

n,m(t) (13)

We first define the continuous sampling covariance vector between xh1
n1

and xh2
n2

as zh1,h2
n1,n2, where xh1

n1

and xh2
n2

are the data vector of the n1th FNA of the h1th DTNA and the n2th FNA of the h2th DTNA,
respectively.

When xh1
n1

= xh2
n2

= xh
n, zh,h

n,n can be expressed as

zh,h
n,n =

[
E{xh

n,M1
(xh

n,M1
)∗}, E{xh

n,M1
(xh

n,M1−1)
∗}, · · · , E{xh

n,M1
(xh

n,1)
∗}, E{xh

n,M (xh
n,M−1)

∗}

E{xh
n,M1+1(x

h
n,M1

)∗}, E{xh
n,M1+1(x

h
n,M1−1)

∗}, · · · , E{xh
n,M1+1(x

h
n,1)

∗}, E{xh
n,M (xh

n,M−2)
∗}

...
E{xh

n,M−1(x
h
n,M1

)∗}, E{xh
n,M−1(x

h
n,M1−1)

∗}, · · · , E{xh
n,M−1(x

h
n,1)

∗}, E{xh
n,M (xh

n,M1
)∗}

E{xh
n,M (xh

n,M1−1)
∗}, E{xh

n,M (xh
n,M1−2)

∗}, · · · , E{xh
n,M (xh

n,1)
∗}
]T

∈ C(M+M1M2−1)×1 (14)

When xh1
n1

�= xh2
n2

, we denote zh1,h2
n1,n2=[ (zh1,h2

1n1,n2
)T (zh1,h2

2n1,n2
)T (zh1,h2

3n1,n2
)T (zh1,h2

4n1,n2
)T (zh1,h2

5n1,n2
)T ]T ,

where zh1,h2
1n1,n2

, zh1,h2
2n1,n2

, zh1,h2
3n1,n2

, zh1,h2
4n1,n2

and zh1,h2
5n1,n2

can be expressed as

zh1,h2
1n1,n2

=
[
E{xh1

n1,1(x
h2
n2,M )∗}, E{xh1

n1,2(x
h2
n2,M )∗}, · · · , E{xh1

n1,M1
(xh2

n2,M )∗}, E{xh1
n1,1(x

h2
n2,M−1)

∗},

E{xh1
n1,2(x

h2
n2,M−1)

∗}, · · · , E{xh1
n1,M1

(xh2
n2,M−1)

∗}
]T

∈ C2M1×1 (15)

zh1,h2
2n1,n2

=
[
E{xh1

n1,M1+1(x
h2
n2,M)∗}, E{xh1

n1,1(x
h2
n2,M−2)

∗}, E{xh1
n1,2(x

h2
n2,M−2)

∗}, · · · , E{xh1
n1,M1

(xh2
n2,M−2)

∗},

E{xh1
n1,M1+2(x

h2
n2,M)∗}, E{xh1

n1,1(x
h2
n2,M−3)

∗}, E{xh1
n1,2(x

h2
n2,M−3)

∗}, · · · , E{xh1
n1,M1

(xh2
n2,M−3)

∗},
...

E{xh1
n1,M−2(x

h2
n2,M )∗}, E{xh1

n1,1(x
h2
n2,M1+1)

∗}, E{xh1
n1,2(x

h2
n2,M1+1)

∗}, · · · , E{xh1
n1,M1

(xh2
n2,M1+1)

∗},

E{xh1
n1,M−1(x

h2
n2,M )∗}

]T

∈ C [(M2−2)M1+M2−1]×1 (16)

zh1,h2
3n1,n2

=
[
E{xh1

n1,1(x
h2
n2,M1

)∗}, E{xh1
n1,2(x

h2
n2,M1

)∗}, · · · , E{xh1
n1,M1

(xh2
n2,M1

)∗}, E{xh1
n1,M1

(xh2
n2,M1−1)

∗},

E{xh1
n1,M1

(xh2
n2,M1−2)

∗}, · · · , E{xh1
n1,M1

(xh2
n2,1)

∗}
]T

∈ C(2M1−1)×1 (17)
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zh1,h2
4n1n2

=
[
E{xh1

n1,M (xh2
n2,M−1)

∗}, E{xh1
n1,M1+1(x

h2
n2,M1

)∗}, E{xh1
n1,M1+1(x

h2
n2,M1−1)

∗},

· · · , E{xh1
n1,M1+1(x

h2
n2,1)

∗}, E{xh1
n1,M(xh2

n2,M−2)
∗}, E{xh1

n1,M1+2(x
h2
n2,M1

)},
E{xh1

n1,M1+2(x
h2
n2,M1−1)}, · · · , E{xh1

n1,M1+2(x
h2
n2,1)},
...

E{xh1
n1,M (xh2

n2,M1+2)
∗}, E{xh1

n1,M−2(x
h2
n2,M1

)∗}, E{xh1
n1,M−2(x

h2
n2,M1−1)

∗},

· · · , E{xh1
n1,M−2(x

h2
n2,1)

∗}, E{xh1
n1,M (xh2

n2,M1+1)
∗}
]T

∈ C [(M2−2)M1+M2−1]×1 (18)

zh1,h2
5n1n2

=
[
E{xh1

n1,M−1(x
h2
n2,M1

)∗}, E{xh1
n1,M−1(x

h2
n2,M1−1)

∗}, · · · , E{xh1
n1,M−1(x

h2
n2,1)

∗},

E{xh1
n1,M (xh2

n2,M1
)∗}, E{xh1

n1,M (xh2
n2,M1−1)

∗}, · · · , E{xh1
n1,M (xh2

n2,1)
∗}
]T

∈ C2M1×1 (19)

Then, we denote zh1,h2 as continuous lap sampling covariance vector between xh1 and xh2, where
xh1 and xh2 are the data vector of the h1th DTNA and h2th DTNA, respectively.

When xh1 = xh2 = xh, zh,h can be expressed as

zh,h =
[
(zh,h

N1,N1
)T , (zh,h

N1,N1−1)
T , (zh,h

N1,N1−2)
T , · · · , (zh,h

N1,1)
T , (zh,h

N,N−1)
T

(zh,h
N1+1,N1

)T , (zh,h
N1+1,N1−1)

T , · · · , (zh,h
N1+1,1)

T , (zh,h
N,N−2)

T ,

...
(zh,h

N−1,N1
)T , (zh,h

N−1,N1−1)
T , · · · , (zh,h

N−1,1)
T , (zh,h

N,N1
)T

(zh,h
N,N1−1)

T , (zh,h
N,N1−2)

T , · · · , (zh,h
N,1)

T

]T

(20)

When xh1 �= xh2 , we denote zh1,h2 = [ (zh1,h2
1 )T (zh1,h2

2 )T (zh1,h2
3 )T (zh1,h2

4 )T (zh1,h2
5 )T ]T ,

where zh1,h2
1 , zh1,h2

2 , zh1,h2
3 , zh1,h2

4 and zh1,h2
5 can be expressed as

zh1,h2
1 =

[(
zh1,h2

1,N

)T
,
(
zh1,h2

2,N

)T
, · · · ,

(
zh1,h2

N1,N

)T
,
(
zh1,h2

1,N−1

)T
,
(
zh1,h2

2,N−1

)T
, · · · ,

(
zh1,h2

N1,N−1

)T
]T

(21)

zh1,h2
2 =

[(
zh1,h2

N1+1,N

)T
,
(
zh1,h2

1,N−2

)T
,
(
zh1,h2

2,N−2

)T
, · · · ,

(
zh1,h2

N1,N−2

)T
,

(
zh1,h2

N1+2,N

)T
,
(
zh1,h2

1,N−3

)T
,
(
zh1,h2

2,N−3

)T
, · · · ,

(
zh1,h2

N1,N−3

)T
,

...(
zh1,h2

N−2,N

)T
,
(
zh1,h2

1,N1+1

)T
,
(
zh1,h2

2,N1+1

)T
, · · · ,

(
zh1,h2

N1,N1+1

)T
,
(
zh1,h2

N−1,N

)T
]T

(22)

zh1,h2
3 =

[(
zh1,h2

1,N1

)T
,
(
zh1,h2

2,N1

)T
, · · · ,

(
zh1,h2

N1,N1

)T
,
(
zh1,h2

N1,N1−1

)T
,
(
zh1,h2

N1,N1−2

)T
, · · · ,

(
zh1,h2

N1,1

)T
]T

(23)

zh1,h2
4 =

[(
zh1,h2

N,N−1

)T
,
(
zh1,h2

N1+1,N1

)T
,
(
zh1,h2

N1+1,N1−1

)T
, · · · ,

(
zh1,h2

N1+1,1

)T

(
zh1,h2

N,N−2, z
h1,h2

N1+2,N1

)T
,
(
zh1,h2

N1+2,N1−1

)T
, · · · ,

(
zh1,h2

N1+2,1

)T
,
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...(
zh1,h2

N,N1+2

)T
,
(
zh1,h2

N−2,N1

)T
,
(
zh1,h2

N−2,N1−1

)T
, · · · ,

(
zh1,h2

N−2,1

)T
,
(
zh1,h2

N,N1+1

)T
]T

(24)

zh1,h2
5 =

[(
zh1,h2

N−1,N1

)T
,
(
zh1,h2

N−1,N1−1

)T
, · · · ,

(
zh1,h2

N−1,1

)T
,
(
zh1,h2

N,N1

)T
,
(
zh1,h2

N,N1−1

)T
, · · · ,

(
zh1,h2

N,1

)T
]T

(25)

Then we can construct a vector as

z+ =
[
(zH1,H1)T , (zH1,H1−1)T , (zH1,H1−2)T , · · · , (zH1,1)T , (zH,H−1)T

(zH1+1,H1)T , (zH1+1,H1−1)T , · · · , (zH1+1,1)T , (zH,H−2)T ,

...
(zH−1,H1)T , (zH−1,H1−1)T , · · · , (zH−1,1)T , (zH,H1)T ,

(zH,H1−1)T , (zH,H1−2)T , · · · , (zH,1)T
]T

(26)

According to the proofs of Appendix A, Appendix B, and Appendix C, we know that z+ consists of all
the non-negative consecutive lap samples. According to the symmetry of lap, we can obtain znew as

znew =
[

Jz∗+
(
2 : DOFs+1

2

)
z+

]
(27)

According to Eqs. (11) and (12), we can obtain the extended covariance matrix R′
xx or R′′

xx. The
flowchart about constructing the covariance matrix is shown in Fig. 2.

Step 1: Construct vector z       via (20)H  H1 1 

Step 2: Construct the remaining H + H H  - 2 vectors in (26) via (21)-(25)1 2

Step 3: Using constructed H + H H  - 1 vectors to construct z  via (26)

new

+1 2

Step 4: Using z   to construct z     via (27)+

xxStep 5: Using z     to construct R   or  R   via (11) or (12)xx
' ''

new

Figure 2. Flowchart of the process to construct covariance matrix.

Remark 3 : In [9–13], although the authors have proved the consecutiveness of the laps for the proposed
nested array, they did not give the detail for how to construct the extended covariance matrix. In this
subsection, we give the detailed process to construct the extended covariance matrix.
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Figure 3. MUSIC spectra of proposed TTNA for 81 signals.

5. SIMULATION

In this section, we present some experiments to examine the effectiveness of proposed TTNA for DOA
estimation. For all nested arrays in each experiment, MUSIC algorithm [25] is used to perform DOA
estimation.

5.1. Comparison of Space Spectra

Firstly, we compare the space spectra of three multiple-nested arrays for larger number of sensors. We
suppose that the total number of sensors is 64, and SNR is 0 dB. 200 snapshots are used to estimate
the extended covariance matrix. The searching range of MUSIC algorithm is from −90◦ to 90◦ with the
grid of 0.1◦. Fig. 3, Fig. 4, and Fig. 5 show the MUSIC spectra of three arrays for 81 signals distributed
uniformly from −80◦ to 80◦. From Fig. 3, we can find that the proposed TTNA can distinguish the 81
signals clearly. From Fig. 4 and Fig. 5, we can see clearly that a few signals cannot be discriminated by

Figure 4. MUSIC spectra of DTNA for 81 signals.
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the other two DTNAs.
Secondly, we compare the space spectra of different nested arrays for smaller number of sensors.

Suppose that the total number of sensors is 20, and SNR is 0 dB. 500 snapshots are used to estimate the
extended covariance matrix. Because the number of sensors for the common TTNA should be larger
than 64, we take a 20-element DTNA as a particular TTNA with H = 1. In [21], some comparison
experiments of two equivalent DTNAs with smaller number of sensors have been presented. Hence, we
only compare the space spectra of DTNA with other three nested arrays [8, 10, 11]. Fig. 6 shows the
MUSIC spectra of 15 signals distributed uniformly between −35◦ and 35◦. Fig. 7 shows the MUSIC
spectra of 41 signals distributed uniformly from −80◦ to 80◦. From Fig. 6 and Fig. 7, we can find that
DTNA shows higher resolution than the other three nested arrays.

Figure 5. MUSIC spectra of DTNA [14] for 81 signals.

Figure 6. MUSIC spectra of four nested arrays for 15 signals.
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Figure 7. MUSIC spectra of four nested arrays for 41 signals.

5.2. Comparison of RMSE

The root-mean-square error (RMSE) of DOA estimation as the performance measurement is given by

RMSE =

√√√√ 1
KJ

J∑
j=1

K∑
k=1

(θ̂kj − θk)2 (28)

where J = 200, and θ̂kj is the estimation of θk in the jth Monte Carlo trial.
Firstly, we compare the RMSE of DOA estimation for three multiple-nested arrays with larger

number of sensors. We suppose that the total number of sensors is 64 for the three multiple-nested
arrays. Suppose that 41 signals are uniformly distributed from −80◦ to 80◦. Fig. 8 shows the RMSE of
DOA estimation versus SNR with T = 200. From Fig. 8, we can see clearly that the RMSE of MUSIC

Figure 8. RMSE against SNR for three multiple nested arrays.
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algorithm with the proposed TTNA is far lower than the other two DTNAs, particularly when the SNR
is larger than 0 dB.

Secondly, we compare the RMSE of DOA estimation for different nested arrays with smaller number
of sensors. We suppose that the total number of sensors is 20 for the four nested arrays. The used
20-element DTNA is composed by 4 5-element nested arrays. Suppose that 15 signals are uniformly
distributed from −70◦ to −70◦. Fix the snapshots at T = 500, and Fig. 9 shows the RMSE of MUSIC
algorithm versus SNR for four nested arrays. Then, we fix SNR at 5 dB, and Fig. 10 shows the RMSE
of MUSIC algorithm versus snapshots for four nested arrays. From the two figures, it is clear to find
that the RMSE of MUSIC algorithm with the DTNA is lower than the other three nested arrays.

Figure 9. RMSE against SNR for four nested arrays.

Figure 10. RMSE against snapshots for three nested arrays.
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6. CONCLUSION

In this paper, we present a new hole-free nested array which consists of multiple fundamental nested
arrays. The positions of these fundamental nested arrays are obtained according to the other given
nested array. The closed-form expression of DOFs and the detailed process for the construction of
extended covariance matrix are given. Compared with many preexisting nested arrays, the proposed
nested array can provide more degrees of freedom (DOFs). Because of the increase of DOFs, the
proposed array shows higher resolution in DOA estimation. Lots of simulation results certify that the
proposed array has better performance for DOA estimation.

APPENDIX A.

Proof of Proposition 1

Observing the set Lh
n1,n2

, we can find that many repeating elements appear in the set. If we want to
know the characteristic of the set Lh

n1,n2
, we only need to pick out all unique elements. Giving enough

thought to the construction of FNA, we denote five sub-sets of Lh
n1,n2

as

Lh
1n1n2

= {ah
n1,1 − ah

n2,M , ah
n1,2 − ah

n2,M , · · · , ah
n1,M1

− ah
n2,M , ah

n1,1 − ah
n2,M−1,

ah
n1,2 − ah

n2,M−1, · · · , ah
n1,M1

− ah
n2,M−1} (A1)

Lh
2n1n2

= {ah
n1,M1+1 − ah

n2,M , ah
n1,1 − ah

n2,M−2, a
h
n1,2 − ah

n2,M−2, · · · , ah
n1,M1

− ah
n2,M−2,

ah
n1,M1+2 − ah

n2,M , an1,1 − ah
n2,M−3, a

h
n1,2 − ah

n2,M−3, · · · , ah
n1,M1

− ah
n2,M−3,

...
ah

n1,M−2 − ah
n2,M , ah

n1,1 − ah
n2,M1+1, a

h
n1,2 − ah

n2,M1+1, · · · ,

ah
n1,M1

− ah
n2,M1+1, a

h
n1,M−1 − ah

n2,M} (A2)

Lh
3n1n2

= {ah
n1,1 − ah

n2,M1
, ah

n1,2 − ah
n2,M1

, · · · , ah
n1,M1

− ah
n2,M1

, ah
n1,M1

− ah
n2,M1−1,

ah
n1,M1

− ah
n2,M1−2, · · · , ah

n1,M1
− ah

n2,1} (A3)

Lh
4n1n2

= {ah
n1,M − ah

n2,M−1, a
h
n1,M1+1 − ah

n2,M1
, ah

n1,M1+1 − ah
n2,M1−1, · · · , ah

n1,M1+1 − ah
n2,1,

ah
n1,M − ah

n2,M−2, a
h
n1,M1+2 − ah

n2,M1
, ah

n1,M1+2 − ah
n2,M1−1, · · · , ah

n1,M1+2 − ah
n2,1,

...
ah

n1,M − ah
n2,M1+2, a

h
n1,M−2 − ah

n2,M1
, ah

n1,M−2 − ah
n2,M1−1, · · · ,

ah
n1,M−2 − ah

n2,1, a
h
n1,M − ah

n2,M1+1} (A4)

Lh
5n1n2

= {ah
n1,M−1 − ah

n2,M1
, ah

n1,M−1 − ah
n2,M1−1, · · · , ah

n1,M−1 − ah
n2,1, a

h
n1,M − ah

n2,M1
,

ah
n1,M − ah

n2,M1−1, · · · , ah
n1,M − ah

n2,1} (A5)

According to the rule of the five subsets from Eqs. (A1)–(A5), we have⎧⎪⎨
⎪⎩
∣∣Lh

1n1n2

∣∣ = ∣∣Lh
5n1n2

∣∣ = 2M1∣∣Lh
2n1n2

∣∣ = ∣∣Lh
4n1n2

∣∣ = (M2 − 2)M1 + M2 − 1∣∣Lh
3n1n2

∣∣ = 2M1 − 1

(A6)

Comparing any two adjacent elements in subset Lh
in1n2

, i = 1, 2, 3, 4, 5, we can find that the
elements increase strictly. Using Equations (3)–(4), we can calculate the first element and last element
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of Lh
in1n2

. Comparing the last element of Lh
in1n2

with the first element of Lh
(i+1)n1n2

, i = 1, 2, 3, 4, yields⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ah
n1,M1

− ah
n2,M−1 < ah

n1,M1+1 − ah
n2,M

ah
n1,M−1 − ah

n2,M < ah
n1,1 − ah

n2,M1

ah
n1,M1

− ah
n2,1 < ah

n1,M − ah
n2,M−1

ah
n1,M − ah

n2,M1+1 < ah
n1,M−1 − ah

n2,M1

(A7)

Combining the progressive increase of Lh
in1n2

with Eq. (A7), we can know that any two elements

in
5⋃

i=1
Lh

in1n2
are unequal. Then, it is easy to know

∣∣∣Lh
n1,n2

∣∣∣ ≥ ∣∣∣Lh
1n1n2

∣∣∣+ ∣∣∣Lh
2n1n2

∣∣∣+ ∣∣∣Lh
3n1n2

∣∣∣+ ∣∣∣Lh
4n1n2

∣∣∣+ ∣∣∣Lh
5n1n2

∣∣∣ = 2M + 2M2M1 − 3 = D (A8)

Min(Lh
n1,n2

) = Min{Lh
n1
} − Max{Lh

n2
} =ah

n1,1 − ah
n2,M (A9)

Max(Lh
n1,n2

) = Max{Lh
n1
} − Min{Lh

n2
} = ah

n1,M − ah
n2,1 (A10)∣∣∣Lh

n1,n2

∣∣∣ ≤ Max(Lh
n1,n2

)−Min(Lh
n1,n2

)+1 = (ah
n1,M−ah

n2,1)−(ah
n1,1−ah

n2,M )+1 = 2M+2M2M1−3 (A11)

We also need to notice the fact that equality in Eq. (A8) holds if and only if Lh
n1,n2

contains all the
contiguous integers from Min(Lh

n1,n2
) to Max(Lh

n1,n2
).

Combining Eq. (A8) with Eq. (A11), we have∣∣∣Lh
n1,n2

∣∣∣ = 2M + 2M2M1 − 3 = Max(Lh
n1,n2

) − Min(Lh
n1,n2

) + 1 (A12)

Then, we can prove the two facts in Proposition 1 simultaneously.

APPENDIX B.

Proof of Proposition 2

Consider N2 + 1 groups of cross-lap sets, which are expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Group 1: Lh
N1,N1

, Lh
N1,N1−1, · · · , Lh

N1,1, L
h
N,N−1

Group 2 : Lh
N1+1,N1

, Lh
N1+1,N1−1, · · · , Lh

N1+1,1, L
h
N,N−2

...
Group N2 : Lh

N−1,N1
, Lh

N−1,N1−1, · · · , Lh
N−1,1, L

h
N,N1

Group N2 + 1 : Lh
N,N1−1, L

h
N,N1−2, · · · , Lh

N,1

(B1)

Obviously, the last group contains N1 − 1 sets, and there are N1 + 1 sets in any other group. Hence, it
is easy to know that the total number of sets in the N2 + 1 groups is N + N1N2 − 1.

Because similar rules exist in the top N2 groups, we first consider these groups. In each group,
comparing the maximum values of adjacent sets via Eqs. (3), (4), and (7) yields

Max(Lh
n1,n2−1) − Max(Lh

n1,n2
) =

[
Max(Lh

n1
) − Min(Lh

n2−1)
]
−
[
Max(Lh

n1
) − Min(Lh

n2
)
]

= Min(Lh
n2

) − Min(Lh
n2−1) = D (B2)

where N − 1 ≥ n1 ≥ N1, 2 ≤ n2 ≤ N1, and

Max(Lh
N,n2

) − Max(Lh
N+N1−1−n2,1) =

[
Max(Lh

N ) − Min(Lh
n2

)
]
−
[
Max(Lh

N+N1−1−n2
) − Min(Lh

1)
]

= D (B3)

where N − 1 ≥ n2 ≥ N1.
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Then, we consider the N − 1 sets Lh
N,N−1, Lh

N,N−2, · · · , Lh
N,1. Comparing the maximum values of

adjacent sets, we have

Max(Lh
N,n2

) − Max(Lh
N,n2+1) =

[
Max(Lh

N ) − Min(Lh
n2

)
]
−
[
Max(Lh

N ) − Min(Lh
n2+1)

]
= Min(Lh

n2+1) − Min(Lh
n2

) =
{

D, N1 − 1 ≥ n2 ≥ 1
(N1+1)D, N1 ≤ n2 ≤ N − 2

(B4)

From Eqs. (B2), (B3), and the first case of Eq. (B4), we can confirm that the maximum of each
set in the same group grows uniformly with D being common difference.

Next, we consider all the sets in the N2 + 1 groups and sort them based on the order in Eq. (B1).
For example, we call Lh

N,N−1 as the (N1 + 1)th set, and Lh
N1+1,N1

as the (N1 + 2)th set. According to
the second case of Eq. (B4), we can further confirm that the N +N1N2 −1 maximums of corresponding
N + N1N2 − 1 sets increase with D being common difference. Based on Proposition 1, Lh

n1,n2
contains

all the contiguous integers from Min(Lh
n1,n2

) to Max(Lh
n1,n2

) and
∣∣Lh

n1,n2

∣∣ = D when n1 > n2. It is
indicated that Max{Lh

n1,n2
} − Min{Lh

n1,n2
} =D − 1. Then, it is easy to know that the minimum of the

ith set is one more than the maximum of (i − 1)th set when N + N1N2 − 1 ≥ i > 1. Denote the union
of the N + N1N2 − 1 sets in Eq. (B1) as

L̄h =

⎛
⎝n1=N−1, n2=N1⋃

n1=N1,n2=1

Lh
n1, n2

⎞
⎠⋃

(
N−1⋃
n2=1

Lh
N, n2

)
. (B5)

It is clear that L̄h contains all the contiguous integers from Min(Lh
N1,N1

) to Max(Lh
N,1). Because

Min(Lh
N1,N1

) = Min(Lh), Max(Lh
N,1) = Max(Lh) and L̄h ⊂ Lh, we know that Lh contains all the

contiguous integers from Min(Lh) to Max(Lh
N,1). Since Min(Lh) = 0 and Max(Lh) = [N + N1N2 −

2][2M + 2M2M1 − 3] + M + M2M1 − 2, L contains all the integers from 0 to [N + N1N2 − 2][2M +
2M2M1 − 3] + M + M2M1 − 2.

APPENDIX C.

Proof of Proposition 3
Denoting the position set of the hth DTNA as P h={Lh

1 , Lh
2 , · · · , Lh

N}, the number of integers
between Max(P h) and Max(P h+1) can be expressed as

Wh,h+1 =

⎧⎨
⎩

D1 − 1, when 1 ≤ h ≤ H1 − 1
(H1 + 1)D1 − 1, when H1 ≤ h < H − 1
H1D1 − 1, when h = H − 1

(C1)

Denoting Lh1,h2
n1,n2 as non-negative cross-lap set between Lh1

n1
and Lh2

n2
, it is easy to know that the

non-negative cross-lapset Lh1,h2(h1 > h2) can be seen as the union of some different Lh1,h2
n1,n2.

As proposition 1, considering Lh
1 , Lh

2 , · · · , Lh
N as N numbers, we can find that the number of different

Lh1,h2
n1,n2 is 2N + 2N2N1 − 3, and the intersection of any two different Lh1,h2

n1,n2 is empty. According to
Eq. (A12), we can know that

∣∣∣Lh1,h2
n1,n2

∣∣∣=2M + 2M2M1 − 3, so we have∣∣∣Lh1,h2

∣∣∣= (2M + 2M2M1 − 3)(2N + 2N2N1 − 3) = D1, (h1 > h2) (C2)

After computing Max(P h) and Max(P h+1), we can drive that
1) Lh+1,1 contains all the integers between Max(P h) and Max(P h+1), when 1 ≤ h ≤ H1 − 1;
2) The H1+1 sets Lh+1,H1, Lh+1,H1−1, · · · , Lh+1,1 and LH,H−(h−H1+1) contain all the integers between

Max(P h) and Max(P h+1), when H1 ≤ h < H − 1;
3) The H1 sets LH,H1 , LH,H1−1, · · · , LH,1 contain all the integers between Max(P h) and Max(P h+1),

when H1 ≤ h ≤ H − 1.
Combining 1), 2), and 3) with Proposition 2, we can know the correctness of Proposition 3.
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