Vol. 82
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-17
Diffraction by a Dielectric Wedge on a Ground Plane
By
Progress In Electromagnetics Research M, Vol. 82, 9-18, 2019
Abstract
The plane wave diffraction by an acute-angled wedge located on a perfect electric conducting plane is studied in the frequency and time domains. Only a TMz polarization is explicitly considered in the manuscript since the case of a TEz polarization can be solved in a similar way. At first, the uniform asymptotic physical optics approach is used to obtain the diffraction coefficients in the framework of the uniform geometrical theory of diffraction. The analytical procedure allows one to obtain closed form expressions that are easy to handle and provide reliable results from the engineering viewpoint. The time domain diffraction coefficients are successively determined by applying the inverse Laplace transform to the frequency domain counterparts. The effectiveness of the proposed solutions is proved by means of numerical tests and comparisons with full-wave numerical techniques.
Citation
Marcello Frongillo, Gianluca Gennarelli, and Giovanni Riccio, "Diffraction by a Dielectric Wedge on a Ground Plane," Progress In Electromagnetics Research M, Vol. 82, 9-18, 2019.
doi:10.2528/PIERM19030601
References

1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

2. Riccio, G., "Uniform asymptotic physical optics solutions for a set of diffraction problems," Wave Propagation in Materials for Modern Applications, 33-54, A. Petrin Ed., Intech, Vukovar, HR, 2010.

3. Gennarelli, G. and G. Riccio, "A uniform asymptotic solution for diffraction by a right-angled dielectric wedge," IEEE Trans. Antennas Propagat., Vol. 59, 898-903, 2011.
doi:10.1109/TAP.2010.2103031

4. Gennarelli, G. and G. Riccio, "Plane-wave diffraction by an obtuse-angled dielectric wedge," J. Opt. Soc. Am. A, Vol. 28, 627-632, 2011.
doi:10.1364/JOSAA.28.000627

5. Gennarelli, G., M. Frongillo, and G. Riccio, "High-frequency evaluation of the field inside and outside an acute-angled dielectric wedge," IEEE Trans. Antennas Propagat., Vol. 63, 374-378, 2015.
doi:10.1109/TAP.2014.2364305

6. Frongillo, M., G. Gennarelli, and G. Riccio, "Plane wave diffraction by arbitrary-angled lossless wedges: High-frequency and time-domain solutions," IEEE Trans. Antennas Propagat., Vol. 66, 6646-6653, 2018.
doi:10.1109/TAP.2018.2876602

7. Berntsen, S., "Diffraction of an electric polarized wave by a dielectric wedge," SIAM J. Appl. Math., Vol. 43, 186-211, 1983.
doi:10.1137/0143013

8. Rawlins, A. D., "Diffraction by, or diffusion into, a penetrable wedge," Proc. R. Soc. Lond. A, Vol. 455, 2655-2686, 1999.
doi:10.1098/rspa.1999.0421

9. Burge, R. E., et al. "Microwave scattering from dielectric wedges with planar surfaces: A diffraction coefficient based on a physical optics version of GTD," IEEE Trans. Antennas Propagat., Vol. 47, 1515-1527, 1999.
doi:10.1109/8.805894

10. Rouviere, J. F., N. Douchin, and P. F. Combes, "Diffraction by lossy dielectric wedges using both heuristic UTD formulations and FDTD," IEEE Trans. Antennas Propagat., Vol. 47, 1702-1708, 1999.
doi:10.1109/8.814950

11. Seo, C. H. and J. W. Ra, "Plane wave scattering by a lossy dielectric wedge," Microwave Opt. Technol. Lett., Vol. 25, 360-363, 2000.
doi:10.1002/(SICI)1098-2760(20000605)25:5<360::AID-MOP19>3.0.CO;2-I

12. Kim, S. Y., J. W. Ra, and S. Y. Shin, "Diffraction by an arbitrary-angled dielectric wedge: part I - Physical optics approximation," IEEE Trans. Antennas Propagat., Vol. 39, 1272-1281, 1991.
doi:10.1109/8.81474

13. Kim, S. Y., J. W. Ra, and S. Y. Shin, "Diffraction by an arbitrary-angled dielectric wedge. II. Correction to physical optics solution," IEEE Trans. Antennas Propagat., Vol. 39, 1282-1292, 1991.
doi:10.1109/8.81474

14. Bernardi, P., R. Cicchetti, and O. Testa, "A three-dimensional UTD heuristic diffraction coefficient for complex penetrable wedges," IEEE Trans. Antennas Propagat., Vol. 50, 217-224, 2002.
doi:10.1109/8.997998

15. Salem, M. A., A. H. Kamel, and A. V. Osipov, "Electromagnetic fields in presence of an infinite dielectric wedge," Proc. R. Soc. Lond. A, Vol. 462, 2503-2522, 2006.
doi:10.1098/rspa.2006.1691

16. Daniele, V. and G. Lombardi, "The Wiener-Hopf solution of the isotropic penetrable wedge problem: Diffraction and total field," IEEE Trans. Antennas Propagat., Vol. 59, 3797-3818, 2011.
doi:10.1109/TAP.2011.2163780

17. Vasilev, E. N. and V. V. Solodukhov, "Diffraction of electromagnetic waves by a dielectric wedge," Radiophysics and Quantum Electronics, Vol. 17, 1161-1169, 1976.
doi:10.1007/BF01036512

18. Vasilév, E. N., V. V. Solodukhov, and A. I. Fedorenko, "The integral equation method in the problem of electromagnetic waves diffraction by complex bodies," Electromagnetics, Vol. 11, 161-182, 1991.
doi:10.1080/02726349108908271

19. Budaev, B., Diffraction by Wedges, Longman Scient, 1995.

20. Veruttipong, T. W., "Time domain version of the uniform GTD," IEEE Trans. Antennas Propagat., Vol. 38, 1757-1764, 1990.
doi:10.1109/8.102736

21. Gennarelli, G. and G. Riccio, "Time domain diffraction by a right-angled penetrable wedge," IEEE Trans. Antennas Propagat., Vol. 60, 2829-2833, 2012.
doi:10.1109/TAP.2012.2194668

22. Gennarelli, G. and G. Riccio, "Obtuse-angled penetrable wedges: A time domain solution for the diffraction coefficients," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 16, 2020-2028, 2013.
doi:10.1080/09205071.2013.831327

23. Frongillo, M., G. Gennarelli, and G. Riccio, "TD-UAPO diffracted field evaluation for penetrable wedges with acute apex angle," J. Opt. Soc. Am. A, Vol. 32, 1271-1275, 2015.
doi:10.1364/JOSAA.32.001271

24. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a structure composed of metallic and dielectric 90˚ blocks," IEEE Antennas Wireless Propagat. Lett., Vol. 17, 881-885, 2018.
doi:10.1109/LAWP.2018.2820738

25. Clemmow, P. C., The Plane Wave Spectrum Representation of Electromagnetic Fields, Oxford University Press, 1996.
doi:10.1109/9780470546598

26. Maliuzhinets, G. D., "Inversion formula for the Sommerfeld integral," Soviet Physics Doklady, Vol. 3, 52-56, 1958.

27. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, 2000.