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Diffraction by a Dielectric Wedge on a Ground Plane

Marcello Frongillo1, Gianluca Gennarelli2, and Giovanni Riccio3, *

Abstract—The plane wave diffraction by an acute-angled wedge located on a perfect electric conducting
plane is studied in the frequency and time domains. Only a TMz polarization is explicitly considered in
the manuscript since the case of a TEz polarization can be solved in a similar way. At first, the uniform
asymptotic physical optics approach is used to obtain the diffraction coefficients in the framework of
the uniform geometrical theory of diffraction. The analytical procedure allows one to obtain closed
form expressions that are easy to handle and provide reliable results from the engineering viewpoint.
The time domain diffraction coefficients are successively determined by applying the inverse Laplace
transform to the frequency domain counterparts. The effectiveness of the proposed solutions is proved
by means of numerical tests and comparisons with full-wave numerical techniques.

1. INTRODUCTION

Electromagnetic engineers working in many application areas appreciate the availability of tools based
on the Uniform Geometrical Theory of Diffraction (UTD) [1] since it provides a simple physical
representation of the wave propagation in terms of incident, reflected, transmitted, and diffracted rays.
On the other hand, numerical techniques give no physical meanings and require a large amount of time
and computing resources at high frequencies.

The frequency domain Uniform Asymptotic Physical Optics (FD-UAPO) approach has recently
emerged as a useful and alternative high-frequency method to obtain closed form approximate solutions
to plane wave diffraction problems [2]. No special functions and integral equations must be computed
by means of numerical techniques since such solutions contain the UTD transition function and the
Geometrical Optics (GO) response of the structure in terms of reflection and transmission coefficients.
The FD-UAPO solutions result from an analytic procedure and are easy to handle in the UTD context.
They compensate the GO field discontinuities and their accuracy has been tested using available
numerical tools. Note that they produce inaccuracies in specific well-known cases (e.g., grazing incidence
with respect to the illuminated surface of the structure) since they are based on the PO approximation.

Two-dimensional problems of plane wave diffraction by isolated dielectric wedges have been solved
by means of the FD-UAPO approach [3–6] by dividing the observation domain into two parts: the
wedge shaped (internal) region and the surrounding free space. The ray-tracing technique has been
used to determine the GO field accounting for the multiple reflection and transmission propagation
mechanisms generated by the wedge geometry. In particular, the knowledge of the GO field at the
internal and external planar faces of the dielectric has permitted to calculate the electric and magnetic
equivalent PO surface currents. The scattering problem in the external (internal) sub-domain has
been tackled considering the equivalent PO surface currents on the external (internal) faces of the
wedge as sources in the radiation integral that has been reduced to a standard form by using useful
approximations and analytic evaluations. The Steepest Descent Method and the Multiplicative Method
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have been successively applied to extract the diffraction contribution associated to each face. Numerical
tests have demonstrated the effectiveness of the corresponding FD-UAPO solutions for the diffraction
coefficients to be used in the UTD framework.

It is worth noting that the diffraction by penetrable wedges is a challenging problem from the
analytic viewpoint. Some existing methods provide analytical and heuristic approximate solutions
under certain assumptions, others try to solve the problem in an exact sense combining analytical and
numerical techniques that often limit the computation efficiency and applicability of the approach.
Representative results in the frequency domain can be found in [7–19].

The UTD-like formulation of the FD-UAPO diffraction coefficients for the problems tackled in [3–
6] has permitted to determine the time domain (TD) counterparts in closed form according to [20].
The inverse Laplace transform has been applied under the hypothesis that the dielectric parameters are
independent of the frequency. The corresponding TD-UAPO diffraction coefficients have been presented
in [6, 21–23] and used to evaluate the transient diffracted field originated by an arbitrary function plane
wave via a convolution integral.

The goal of this manuscript is to propose the FD- and TD-UAPO diffraction coefficients associated
with a TMz plane wave impacting a composite structure formed by a tapered infinite dielectric wedge
on a perfect electric conducting (PEC) half-space (see Fig. 1). The FD-UAPO diffraction coefficients
relevant to a TEz plane wave into the free-space and dielectric regions can be determined accounting for
the results presented in [3–5]. In particular, the TEz diffraction coefficients differ by a “—” sign from
the TMz ones under the condition to use the reflection and transmission coefficients for the parallel
polarization instead of those associated to the perpendicular polarization. The FD- and TD-UAPO
diffraction coefficients for a structure composed by metallic and dielectric 90◦ blocks have been recently
proposed by the authors [24].

The incidence direction is orthogonal to the dielectric edge, so that a two-dimensional problem
is tackled. The ray-tracing analysis and the GO field evaluation into the free-space and dielectric
regions are reported in Section 2. The successive section is dedicated to the FD-UAPO solutions that
are validated by means of numerical tests and comparisons with FDTD data, whereas the TD-UAPO
counterparts are presented in Section 4. Conclusions are presented in Section 5.

2. THE GO FIELD

The two-dimensional geometry of the considered problem is depicted in Fig. 1. A dielectric wedge with
internal apex angle γ < π/2 is positioned upon a PEC half-space and its edge coincides with the z
axis of a Cartesian coordinates system having the y axis perpendicular to the PEC surface. The wedge
sector is indicated by Ωd and is filled by a lossless non-magnetic medium characterized by the relative
permittivity εr. The composite structure is surrounded by the free-space region Ω with impedance ζ0

and propagation constant k0. The electric field associated to a TMz plane wave from Ω is expressed
by Ei = Ei

0e
−jk0·rẑ, where k0 = k0(− cos φ′x̂ − sin φ′ŷ) and r = ρ(cos φx̂ + sin φŷ) denotes the position

vector of the observation point P .
This Section is devoted to the evaluation of the GO field that will be used in the next section to

Figure 1. The plane wave diffraction problem refers to a composite structure formed by a tapered
infinite dielectric wedge on a PEC half-space.
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compute the PO surface currents involved in the FD-UAPO approach.
The incident wave is reflected by SPEC and Sd in Ω and transmitted into Ωd according to the

Snell’s laws. Unfortunately the previous statement does not fully describe the GO field propagation in
the observation regions since the transmitted wave into Ωd originates a bouncing wave (see Fig. 2) that
generates further GO contributions in Ω until the total reflection occurs within the wedge. Note that if
γ < φ′ < γ + π/2 the bouncing wave propagates initially toward the edge and successively away from
it [6]. In addition, if π − γ < φ′ < π the complexity of the wave propagation analysis increases because
of a second incident wave that illuminates Sd after the reflection by SPEC . This additional incident
wave produces further GO contributions that can be independently determined and added to those due
to the main incident wave. According to the previous statements, a growth in complexity occurs if
γ < φ′ < γ + π/2 or π − γ < φ′ < π without adding more information about the method proposed to
solve the diffraction problem, and therefore the direction γ +π/2 < φ′ < π− γ is chosen from this point
on to determine the GO field and the FD-UAPO diffracted field.

Figure 2. Ray tracing.

The ray-tracing scheme relevant to the considered case is shown in Fig. 2. The incident wave
penetrates into Ωd with transmission angle θt

0 = sin−1(sin θi
0/
√

εr), where θi
0 = φ′ − (γ + π/2), and

propagates toward Sd−PEC with incidence direction θi
1 = θt

0 + γ. The wave is then reflected by Sd−PEC

and propagates toward Sd, where it is successively reflected with direction θr
2 = θi

2 = θt
0 + 2γ and

transmitted into Ω with transmission angle θt
2 = sin−1(

√
εr sin θi

2). Such a propagation scheme is
iterated until θr

n = θi
n = θt

0 +nγ < π/2− γ and produces transmission contributions in Ω until the total
reflection occurs inside the wedge, i.e., when θi

n > θc = sin−1(1/
√

εr). Accordingly, the GO field at any
point of the observation regions can be evaluated by means of the following expressions:

EGO
Ω (P ) =

{
ejk0ρ cos(φ−φ′) − ejk0ρ cos(φ+φ′)U (φ − φRBPEC

) + Γ0e
jk0ρ cos((φ−γ)+(φ′−γ))U (φRBd

− φ)

+T0

⎡
⎢⎣ N∑

n=1
n even

Tn

(
n−1∏
m=1

Γm

)
e−jk0ρ sin((φ−γ)+θt

n)U
(
θc − θi

n

)
U
(π

2
−θt

n−(φ − γ)
)⎤⎥⎦
⎫⎪⎬
⎪⎭Ei

0ẑ (1)

EGO
Ωd

(P ) =

⎧⎪⎨
⎪⎩ejkdρ sin((φ−γ)−θt

0) +
N∑

n=1
n even

(
n∏

m=1

Γm

)
ejkdρ sin((φ−γ)−θi

n)

+
N∑

n=1
n odd

(
n∏

m=1

Γm

)
e−jkdρ sin((φ−γ)+θi

n+1)

⎫⎪⎬
⎪⎭T0E

i
0ẑ (2)

where U(θ) = 1 if θ > 0 or U(θ) = 0 otherwise, N = Int[(π/2 − θt
0)/γ], with Int[·] denoting the integer

part of the argument, kd = k0
√

εr is the propagation constant of the dielectric, φRBPEC
= π − φ′

and φRBd
= π + 2γ − φ′ are associated to the reflection boundaries due to SPEC and Sd, respectively,
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θt
n = sin−1(

√
εr sin θi

n) is the transmission angle at the n-th step,

Γ0 =
cos θi

0 −
√

εr cos θt
0

cos θi
0 +

√
εr cos θt

0

(3)

T0 =
2cos θi

0

cos θi
0 +

√
εr cos θt

0

(4)

Γm =
√

εr cos θi
m − cos θt

m√
εr cos θi

m + cos θt
m

if m is even or Γm = −1 if m is odd (5)

Tn =
2
√

εr cos θi
n√

εr cos θi
n + cos θt

n

(6)

3. THE FD-UAPO DIFFRACTED FIELD

Two distinct problems relevant to the dielectric region and the surrounding space are tackled. For each
of them, the knowledge of the GO field on the surfaces bounding the region allows one to evaluate the
electric (Js) and magnetic (Jms) equivalent PO surface currents to be used as sources on the dielectric
surfaces.

3.1. Free-Space Region Ω

The radiation integral is considered to determine the scattered field due to sources on S+
d ∪ SPEC :

Es
Ω = −jk0

∫∫
S+

d

[(
I − R̂R̂

)
ζ0 (Js)S+

d
+ (Jms)S+

d
× R̂

] e−jk0R

4πR
dS+

d

−jk0

∫∫
SPEC

[(
I − R̂R̂

)
ζ0 (Js)SPEC

] e−jk0R

4πR
dSPEC (7)

where I denotes the identity matrix; R̂ is the unit vector from the source point S(r′(ρ′, z′)) to P ;
R = |r − r′(ρ′, z′)| is the corresponding distance, and

ζ0 (Js)SPEC
= 2Ei

0 sin φ′ejk0ρ′ cos(π−φ′)ẑ (8)

ζ0 (Js)S+
d

=

⎡
⎢⎣(1−Γ0) sin(φ′−γ)ejk0ρ′ cos(φ′−γ)−T0

N∑
n=1

n even

Tn

(
n−1∏
m=1

Γm

)
cos θt

ne−jk0ρ′ sin θt
nU
(
θc−θi

n

)
⎤
⎥⎦Ei

0ẑ

(9)

(Jms)S+
d

=

⎡
⎢⎣(1 + Γ0)ejk0ρ′ cos(φ′−γ)+T0

N∑
n=1

n even

Tn

(
n−1∏
m=1

Γm

)
e−jk0ρ′ sin θt

nU
(
θc−θi

n

)⎤⎥⎦Ei
0(− cos γx̂−sin γŷ)

(10)
According to [2], the next step is the use of the unit vector of the diffraction direction ŝ =

cos φx̂ + sin φŷ instead of R̂ in Eq. (7):

Es
Ω = −jk0

4π

{
(1 − Γ0) sin(φ′ − γ)

+∞∫
0

+∞∫
−∞

ejk0ρ′ cos(φ′−γ) e
−jk0|r−r′(ρ′,z′)|

|r − r′ (ρ′, z′)| dz′dρ′

−T0

N∑
n=1

n even

Tn

(
n−1∏
m=1

Γm

)
cos θt

nU
(
θc − θi

n

) +∞∫
0

+∞∫
−∞

ejk0ρ′ cos(θt
n+π/2) e−jk0|r−r′(ρ′,z′)|

|r − r′ (ρ′, z′)| dz′dρ′
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−(1 + Γ0) sin(φ − γ)

+∞∫
0

+∞∫
−∞

ejk0ρ′ cos(φ′−γ) e
−jk0|r−r′(ρ′,z′)|

|r − r′ (ρ′, z′)| dz′dρ′

−T0 sin(φ − γ)
N∑

n=1
n even

Tn

(
n−1∏
m=1

Γm

)
U
(
θc − θi

n

) +∞∫
0

+∞∫
−∞

ejk0ρ′ cos(θt
n+π/2) e

−jk0|r−r′(ρ′,z′)|

|r − r′ (ρ′, z′)| dz′dρ′

+2 sin φ′
+∞∫
0

+∞∫
−∞

ejk0ρ′ cos(π−φ′) e
−jk0|r−r′(ρ′,z′)|

|r − r′ (ρ′, z′)| dz′dρ′
}

Ei
0ẑ (11)

since (I − ŝŝ)ẑ = ẑ. The integration along z′ provides the zeroth order Hankel function of the second
kind that can be expressed by using a useful integral representation [25]. The Sommerfeld-Maliuzhinets
inversion formula [26] is successively applied, thus obtaining the following result:

−jk0

4π

+∞∫
0

+∞∫
−∞

ejk0ρ′ cos ξ(φ′) e
−jk0|r−r′(ρ′,z′)|

|r − r′ (ρ′, z′)| dz′dρ′ =
1

j4π

∫
C

e−jk0ρ cos(α−ξ(φ))

cos α + cos ξ (φ′)
dα (12)

where C is the integration path in the complex α-plane shown in Fig. 3. The integral in Eq. (12) is
reduced to a typical diffraction integral that is evaluated by means of the Steepest Descent Method and
the Multiplicative Method in the high-frequency approximation [2].

Re [α]

Im [α]

C

0 π

Figure 3. The integration path C in the complex α-plane.

At the end of the analytical procedure that is previously summarized, the diffracted field
contribution associated to Eq. (11) is expressed by:

Ed
Ω =

{[
(1 − Γ0) sin(φ′ − γ) − (1 + Γ0) sin(φ − γ)

] Ft

(
2k0ρ cos2 (((φ − γ) + (φ′ − γ)) /2)

)
cos(φ − γ) + cos(φ′ − γ)

−T0

N∑
n=1

n even

Tn

⎛
⎜⎝ n−1∏

m=1
m even

Γm

⎞
⎟⎠ (−1)n/2

[
sin(φ − γ) + cos θt

n

]
U(θC − θi

n)

×Ft

(
2k0ρ cos2

((
(φ − γ) + (θt

n + π/2)
)
/2
))

cos(φ − γ) + cos(θt
n + π/2)
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+2 sin φ′Ft

(
2k0ρ cos2 (((π − φ) + (π − φ′)) /2)

)
cos(π − φ) + cos(π − φ′)

}
e−jπ/4

2
√

2πk0

e−jk0ρ

√
ρ

Ei
0ẑ = DΩ

e−jk0ρ

√
ρ

Ei
0ẑ (13)

where Ft(·) is the standard UTD transition function [1]. Accordingly, the FD-UAPO diffraction
coefficient DΩ is expressed in closed form and contains standard parameters and functions.

3.2. Dielectric Region Ωd

The PO surface currents on S−
d ∪ Sd−PEC are used as sources to solve the internal scattering problem.

The analytical procedure previously presented to evaluate DΩ is now applied to determine DΩd
, thus

obtaining:

Dd
Ω = T0

{[
sin(φ − γ) − cos(θt

0)
] Ft

(
2kdρ cos2

((
(2π − φ + γ) + (θt

0 + π/2)
)
/2
))

cos(φ − γ) + cos(θt
0 + π/2)

+
N∑

n=1
n even

⎛
⎜⎝ n−1∏

m=1
m even

Γm

⎞
⎟⎠ (−1)n/2

[
(1 + Γn) sin(φ − γ) + (1 − Γn) cos θi

n

]

×Ft

(
2kdρ cos2

((
(φ − γ) + (θi

n + π/2)
)
/2
))

cos(φ − γ) + cos(θi
n + π/2)

+
N∑

n=1
n odd

⎛
⎜⎝ n−1∏

m=1
m even

Γm

⎞
⎟⎠ (−1)(n−1)/2 cos θi

n

Ft

(
2kdρ cos2

((
(φ−2π)+(θi

n+π/2)
)
/2
))

cos φ + cos(θi
n+π/2)

}
e−jπ/4

2
√

2πkd
(14)

Accordingly, the corresponding diffracted field is:

Ed
Ωd

= DΩd

e−jkdρ

√
ρ

Ei
0ẑ (15)

3.3. Numerical Tests

This part is devoted to show the results of some numerical tests to prove the efficiency and the accuracy
of the proposed solutions.

0 20 40 60 80 100 120 140 160 180
0

Figure 4. GO and UAPO diffracted fields when εr = 2, γ = 15◦, φ′ = 120◦, ρ = 5λ0.
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Figure 5. Total field when εr = 2, γ = 15◦, φ′ = 120◦, ρ = 5λ0.
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Figure 6. Data comparison when εr = 2, γ = 15◦, φ′ = 120◦, ρ = 5λ0.

The first set of figures refers to a wedge that is characterized by εr = 2 and γ = 15◦. The structure
is lit by an incident plane wave at φ′ = 120◦ and P moves on a circular path with ρ = 5λ0, where
λ0 is the free-space wavelength. According to the input data, the GO field possesses four boundaries
corresponding (from left to right in Fig. 4) to the internal reflections (φ ∼= 5◦), transmission through
Sd (φ ∼= 38◦), reflection by SPEC (φ = 60◦) and reflection by Sd (φ = 90◦). The UAPO diffracted
field is reported in Fig. 4 and permits to obtain a total field that is continuous over the full path (see
Fig. 5), thus confirming that its contribution is able to compensate the discontinuities of the GO field.
The accuracy of the solutions has been tested by means of a FDTD code that implements the total
field/scattered field technique [27]. A normalized dB scale is adopted in the next figures to compare the
data. Fig. 6 shows the results for the considered case and makes evident a good agreement between the
data. It is important to remember that the UAPO solutions result from more than one approximation
in the analytical procedure.

The second set of figures is relevant to an incident plane wave at φ′ = 135◦ and a circular observation
path with the same radius of the first set. The internal apex angle of the wedge is γ = 30◦. The results
in Figs. 7 and 8 refer to εr = 5 and εr = 10, respectively. They again confirm the ability of the UAPO
diffracted field to compensate all the GO field discontinuities in the internal and external observation
domains and to provide reliable values of the total field.
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Figure 7. Data comparison when εr = 5, γ = 30◦, φ′ = 135◦, ρ = 5λ0.
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Figure 8. Data comparison when εr = 10, γ = 30◦, φ′ = 135◦, ρ = 5λ0.

4. THE TD-UAPO DIFFRACTED FIELD

The TD counterparts of Eqs. (13) and (15) are determined by using the following convolution integral:

ed
Ω,Ωd

(P, t) = ẑ
1√
ρ

t−ρ/c∫
t0

dΩ,Ωd

(
t − ρ

c
− τ
)

ei (Q, τ ) dτ (16)

with t − ρ/c > t0. The forcing function is the incident field ei at the diffraction point Q, and c is the
speed of light in the considered observation region. The TD-UAPO diffraction coefficients d to be used
in Eq. (16) are obtained by applying the inverse Laplace transform to D under the assumption that εr

is independent of the frequency. According to [20], their expressions are:

dΩ =
1

2
√

2π

⎧⎪⎪⎨
⎪⎪⎩
[
(1 − Γ0) sin(φ′ − γ) − (1 + Γ0) sin(φ − γ)

] G

(
2ρ cos2

(
(φ − γ) + (φ′ − γ)

2

)
, t

)
cos(φ − γ) + cos(φ′ − γ)

−T0

N∑
n=1

n even

(−1)n/2Tn

⎛
⎜⎝ n−1∏

m=1
m even

Γm

⎞
⎟⎠[sin(φ − γ) + cos θt

n

]
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×
G

(
2ρ cos2

(
(φ − γ) + (θt

n + π/2)
2

)
, t

)
cos(φ − γ) + cos(θt

n + π/2)
U(θc − θi

n)

⎫⎪⎪⎬
⎪⎪⎭+

sinφ′
√

2π

G

(
2ρ cos2

(
(π − φ) + (π − φ′)

2

)
, t

)
cos(π − φ) + cos(π − φ′)

(17)

dΩd
=

T0

2
√

2π

⎧⎪⎪⎨
⎪⎪⎩
[
sin(φ − γ) − cos θt

0

] G

(
2ρ cos2

(
(2π − φ + γ) + (θt

0 + π/2)
2

)
, t

)
cos(φ − γ) + cos(θt

0 + π/2)

+
N∑

n=1
n even

(−1)n/2

⎛
⎝ n−1∏

m=1
m even

Γm

⎞
⎠[(1 + Γn) sin(φ − γ) + (1 − Γn) cos θi

n

]

×
G

(
2ρ cos2

(
(2π − φ + γ) + (θi

n + π/2)
2

)
, t

)
cos(φ − γ) + cos(θi

n + π/2)

⎫⎪⎪⎬
⎪⎪⎭

+
T0√
2π

N∑
n=1

n odd

(−1)(n−1)/2

⎛
⎝ n−1∏

m=1
m even

Γm

⎞
⎠ cos θi

n

G

(
2ρ cos2

(
(φ − 2π) + (θi

n + π/2)
2

)
, t

)
cos φ + cos(θi

n + π/2)
(18)

where
G (X, t) =

X√
π ct (t + X/c)

(19)

5. CONCLUSIONS

Useful solutions have been proposed to evaluate the plane wave diffracted field in the free space
surrounding the considered structure, as well as within the wedge-shaped dielectric. The UAPO
approach in the frequency domain has been initially applied, and closed form expressions have been
obtained for the diffraction coefficients. The corresponding field contributions are able to compensate
all the GO field discontinuities inside and outside the dielectric, and guarantee a quite accurate total
field. As a matter of fact, the FD-UAPO solutions suffer from PO approximation and do not account for
the surface waves. Accordingly, such solutions represent a possible good choice if quite accurate results
must be achieved by using UTD-like formulas. Moreover, TD-UAPO diffraction coefficients have been
obtained by applying the inverse Laplace transform to the FD-UAPO counterparts. To the authors’
knowledge, no other closed form expressions are available in the time domain.
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