Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-05-01
A Wideband Conformal Antenna with High Pattern Integrity for mmWave 5G Smartphones
By
Progress In Electromagnetics Research Letters, Vol. 84, 1-6, 2019
Abstract
In this paper, a co-planar waveguide fed circular slot antenna with an operational impedance bandwidth of 20-28 GHz is proposed. In order to reduce the effective occupied volume when the antenna is integrated onto a typical mmWave 5G smartphone, a conformal topology is investigated. Since the radiating aperture is not backed by an electrically large ground plane, it leads to a bidirectional beam resulting in an inherently low forward gain of 4 dBi with a front to back ratio of 1 dB. Hence, a compact exponentially tapered copper film reflector is integrated electrically close (0.046λ at 28 GHz) to the radiating aperture to achieve a forward gain of 8-9 dBi with an effective radiating volume of 0.24λ03. The impedance bandwidth is from 25 to 30 GHz (18.2%) with a 1-dB gain bandwidth of 34.7% indicating high pattern integrity across the band. Since the proposed antenna element offers wideband with high gain, it is a potential candidate for mmWave 5G smartphones.
Citation
Gulur Sadananda Karthikeya, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul, "A Wideband Conformal Antenna with High Pattern Integrity for mmWave 5G Smartphones," Progress In Electromagnetics Research Letters, Vol. 84, 1-6, 2019.
doi:10.2528/PIERL19030503
References

1. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

2. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, September 2014.
doi:10.1109/MCOM.2014.6894454

3. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2183-2186, 2017.
doi:10.1109/LAWP.2017.2703850

4. Yang, B., Z. Yu, Y. Dong, J. Zhou, and W. Hong, "Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6721-6727, Dec. 2017.
doi:10.1109/TAP.2017.2700891

5. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Improvement of gain and elevation tilt angle using metamaterial loading for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 418-420, 2016.
doi:10.1109/LAWP.2015.2449235

6. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "One- and two-dimensional beam-switching antenna for millimeter-wave MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 564-573, Feb. 2016.
doi:10.1109/TAP.2015.2508478

7. Briqech, Z., A. Sebak, and T. A. Denidni, "Wide-scan MSC-AFTSA array-fed grooved spherical lens antenna for millimeter-wave MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2971-2980, July 2016.
doi:10.1109/TAP.2016.2565704

8. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, April 2013.
doi:10.1109/TAP.2012.2237154

9. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Millimeter-wave antenna with wide-scan angle radiation characteristics for MIMO applications," Int. J RF Microw. Comput. Aided Eng., e21564, 2018.

10. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW fed conformal folded dipole with pattern diversity for 5G mobile terminals," Progress In Electromagnetics Research C, Vol. 87, 199-212, 2018.
doi:10.2528/PIERC18082902

11. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW fed wideband corner bent antenna for 5g mobile terminals," IEEE Access, Vol. 7, 10967-10975, 2019.
doi:10.1109/ACCESS.2019.2891728

12. Jilani, S. F. and A. Alomainy, "Planar millimeter-wave antenna on low-cost flexible PET substrate for 5G applications ," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, Davos, 2016.

13. Sarabandi, K., J. Oh, L. Pierce, K. Shivakumar, and S. Lingaiah, "Lightweight, conformal antennas for robotic flapping flyers," IEEE Antennas and Propagation Magazine, Vol. 56, No. 6, 29-40, Dec. 2014.
doi:10.1109/MAP.2014.7011015

14. Garg, R., "Microstrip Antenna Design Handbook," Artech House, 2001.