Vol. 83
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-28
New TLM Formulation for Modeling Epstein Plasma
By
Progress In Electromagnetics Research Letters, Vol. 83, 59-64, 2019
Abstract
In plasma physics, the interaction with electromagnetic waves is related to the electrons contained in the plasma. So to analyze this interaction, the behaviour of electrons contained must be understood and modeled. In this paper, a new TLM formulation for dispersive media called the exponential time differencing (ETD) transmission line matrix (TLM) technique is introduced to model the interaction with dispersive media. To verify the high accuracy and efficiency of this method, the reflection and transmission coefficients of electromagnetic wave through a non-magnetized collisional plasma slab are computed and compared to the analytical solution. As the electron density in plasma can be distributed as Epstein formula, and its distribution is a function of the grads coefficient σ, and the effect of this parameter and the electron collision frequency νc on the reflection coefficient is calculated. The results show that with different values of σ and νc, the reflection coefficient is affected and can be reduced.
Citation
Yasser Ekdiha, Khalid Mounirh, Mohsine Khalladi, and Soufiane El Adraoui, "New TLM Formulation for Modeling Epstein Plasma," Progress In Electromagnetics Research Letters, Vol. 83, 59-64, 2019.
doi:10.2528/PIERL19020705
References

1. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 4, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658

2. Hoefer, J. R., "The transmission line matrix method, theory and applications," IEEE Trans. Microwave Theory Tech., Vol. 33, No. 10, 882-893, 1985.
doi:10.1109/TMTT.1985.1133146

3. Adraoui, E. S., K. mounirh, A. Zugari, M. Iben Yaich, and M. Khalladi, "Novel CDRC-TLM algorithm for the analysis of magnetized plasma," Optik --- International Journal for Light and Electron Optics, Vol. 125, No. 1, 276-279, 2014.
doi:10.1016/j.ijleo.2013.06.049

4. Adraoui, E. S., A. Zugari, M. Bassouh, MI. Yaich, and M. Khalladi, "Novel PLRC-TLM algorithm implementation for modeling electromagnetic wave propagation in gyromagnetic media," I. J. Adv. Sci. Technol., Vol. 6, No. 1, 26-32, 2013.

5. Yaich, I. M., M. Khalladi, I. Zekik, and J. A Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 293-295, 2002.
doi:10.1109/LMWC.2002.802027

6. Abrini, R., M. Iben Yaich, and M. Khalladi, "Efficient modeling of isotropic cold plasma media using JE-TLM method," IEICE Electron., Vol. 4, No. 15, 492-49, 2007.
doi:10.1587/elex.4.492

7. Mounirh, K., S. El Adraoui, M. Charif, M. Khalladi, and M. Iben Yaich, "Modeling of anisotropic magnetized plasma media using PLCDRC-TLM method," Optik --- International Journal for Light and Electron Optics, Vol. 126, No. 1, 1479-1482, 2015.
doi:10.1016/j.ijleo.2015.04.032

8. Yang, H., Y. Zhou, Y. Zan, and R. Chen, "SO-FDTD analysis of the plasma reflectance of Epstein distribution ," Plasma Science and Technology, Vol. 8, No. 6, 2013.

9. Ekdiha, Y., K. Mounirh, S. El Adraoui, M. Khalladi, and M. Iben Yaich, "Analysis of Epstein distribution effect on the plasma reflectance," Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, Springer, Saidia, 2018.

10. Huang, Sh. J. and Y. Zhon, "Exponential time differencing FTDT formulation for plasma," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1393-1364, 2007.

11. Huang, Sh. J. and F. Li, "FTDT implementation for magnetoplasma medium using exponential time differencing," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 183-185, 2005.
doi:10.1109/LMWC.2005.844219

12. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. I. Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research, Vol. 64, No. 10, 157-166, 2018.
doi:10.2528/PIERM17110103

13. Yaich, M. I., M. Khalladi, I. Zekik, and J. A. Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 293-295, 2013.
doi:10.1109/LMWC.2002.802027

14. Becker, K. H., U. Kogelschatz, K. H. Schoenbach, and R. J. Barker, Non-equilibrium Air Plasmas at Atmospheric Pressure, Series in Plasma Physics, Nov. 2004.

15. Kocifaj, M., J. Klaka, F. Kundracik, and G. Videen, "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, No. 11, 765-769, 2015.
doi:10.1002/andp.201500202