Vol. 81
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-26
Unimodular Magnetoelectric Media
By
Progress In Electromagnetics Research M, Vol. 81, 13-20, 2019
Abstract
This article introduces a new class of electromagnetic materials: unimodular media. Unimodular media are magnetoelectric bi-isotropic media for which the determinant of the normalized four-parameter constitutive material matrix is unity. As special cases of such media are perfect electric conductor, perfect magnetic conductor, perfect electromagnetic conductor, simple skewon media, and simple isotropic media with unit refractive index. The essential parameters in the description of unimodular media (strength of impedance, degree of magnetoelectricity, angle of reciprocity) allow for illuminating visualizations of this class of materials.
Citation
Ari Sihvola, and Ismo Veikko Lindell, "Unimodular Magnetoelectric Media," Progress In Electromagnetics Research M, Vol. 81, 13-20, 2019.
doi:10.2528/PIERM19020703
References

1. Frohlich, H., Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Oxford University Press, 1987.

2. Milton, G. W., Theory of Composites, Cambridge University Press, 2002.
doi:10.1017/CBO9780511613357

3. Zouhdi, S., A. Sihvola, and M. Arsalane, Advances in Electromagnetics of Complex Media and Metamaterials, NATO Science Series: II: Mathematics, Physics, and Chemistry, Vol. 89, 504, Kluwer Academic Publishers, Dordrecht, 2003.

4. Capolino, F., Metamaterials Handbook, Theory and Phenomena of Metamaterials, CRC Press, 2009.

5. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.

6. Lindell, I. V., Methods for Electromagnetic Field Analysis, Wiley and IEEE Press, 1995.

7. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE/IET Publishing, 1999.
doi:10.1049/PBEW047E

8. Lindell, I. V., A. H. Sihvola, and K. Suchy, "Six-vector formalism in electromagnetics of bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 7/8, 887-903, 1995.
doi:10.1163/156939395X00631

9. Born, M. and E. Wolf, Principles of Optics, 7th (expanded) Ed., Fourth printing, Cambridge University Press, 2006.

10. Goldstein, H., Classical Mechanics, 2nd Ed., Addison-Wesley, Reading, Mass., 1981.

11. Uslenghi, P. L. E., "Exact scattering by isorefractive bodies," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1382-1385, September 1997.
doi:10.1109/8.623127

12. Sihvola, A. and I. V. Lindell, "PEMC, simple Skewon, and Minkowskian isotropic media: Classification of bi-isotropic metamaterials," Proceedings of the XXXI General Assembly and Scientific Symposium of the International Union of Radio Science (URSI), Beijing, China, August 17–23, 2014, file BD01.5.pdf, https://doi.org/10.1109/URSIGASS.2014.6929220.

13. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

14. Hehl, F. W. and Y. N. Obukhov, Foundations of Classical Electrodynamics, 2003.
doi:10.1007/978-1-4612-0051-2

15. Paiva, C. R. and S. A. Matos, "Minkowskian isotropic media and the perfect electromagnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3231-3245, 2012.
doi:10.1109/TAP.2012.2196929

16. Lindell, I. V., Differential Forms in Electromagnetics, IEEE Press and Wiley, 2004.
doi:10.1002/0471723096

17. Lindell, I. V., Multiforms, Dyadics, and Electromagnetic Media, IEEE Press and Wiley, 2015.

18. Lindell, I. V. and A. Sihvola, "Simple skewon medium realization of DB boundary conditions," Progress In Electromagnetics Research Letters, Vol. 30, 29-39, 2012.
doi:10.2528/PIERL11121802

19. Deschamps, G. A., "Electromagnetics and differential forms," Proceedings of the IEEE, Vol. 69, No. 6, 676-696, June 1981.
doi:10.1109/PROC.1981.12048

20. Sihvola, A. H. and I. V. Lindell, "Bi-isotropic constitutive relations," Microwave and Optical Technology Letters, Vol. 4, No. 8, 295-297, July 1991.
doi:10.1002/mop.4650040805

21. Sihvola, A., "Polarizability of a tri-isotropic sphere," Physical Review E, Vol. 64, 046609, 2001.
doi:10.1103/PhysRevE.64.046609