
Progress In Electromagnetics Research M, Vol. 81, 13–20, 2019

Unimodular Magnetoelectric Media

Ari Sihvola* and Ismo V. Lindell

Abstract—This article introduces a new class of electromagnetic materials: unimodular media.
Unimodular media are magnetoelectric bi-isotropic media for which the determinant of the normalized
four-parameter constitutive material matrix is unity. As special cases of such media are perfect electric
conductor, perfect magnetic conductor, perfect electromagnetic conductor, simple skewon media, and
simple isotropic media with unit refractive index. The essential parameters in the description of
unimodular media (strength of impedance, degree of magnetoelectricity, angle of reciprocity) allow
for illuminating visualizations of this class of materials.

1. INTRODUCTION

When an electromagnetics problem has to be solved in an environment that includes material media
and boundaries, Maxwell equations need to be supplemented with the necessary constitutive relations
that define the response of these materials. The effect of material on the electric and magnetic fields
may sometimes be very simple: a plain isotropic, homogeneous, lossless, dielectric medium can be
represented in electromagnetic equations by a single real number, the permittivity. In such special case
the commonly-used term dielectric constant is in proper place [1].

However, in the real world, the electromagnetic responses of materials are varied. Already everyday-
life natural materials, like snow, ice, soil, rocks, vegetation, can have a more complicated response.
And in engineering applications, the designs purposely aim at composite structures whose macroscopic
properties and material response functions surpass those of their constituent materials. Recent advances
in complex media and metamaterials have exposed the extraordinary variety of reactions that a medium
can display under excitation of electric and magnetic fields. The simple isotropic description has been
generalized into a multitude of new directions: additional responses to be accounted for are anisotropy,
magnetic activity, dissipation, gyrotropy, chirality, non-reciprocity, bi-anisotropy, non-linearity, coupling
with non-electromagnetic excitations and responses, and others [2–4].

The present article presents a systematic manner to chart one subdomain of the wide space of
complex materials. The focus is on bi-isotropic media which are special in the sense that an incident
electric field creates (in addition to causing dielectric polarization) magnetic polarization in the medium,
and vice versa. Still, the medium behaves isotropically, in other words, the strength of the polarization
responses does not depend on the vector direction of the exciting fields [5]. The conventional way of
quantifying bi-isotropic media is to assign four material parameters: two co- and two cross-polarization
numbers. In the following, we will arrive at a new categorization in which the crucial point is to start
from extreme materials (perfect electric conductor and perfect magnetic conductor). This leads to a
taxonomy of bi-isotropic media in a manner that reveals very interesting physical characteristics and
which finds instructive visualization possibilities. In particular, a new class of bi-isotropic media will be
introduced: that of unimodular media.

To find proper tools in this approach towards unimodular materials, let us start from a general
standpoint of fields in bi-anisotropic media and find a frame in which the material parameters are
conveniently normalized.
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2. RENORMALIZATION OF THE BI-ANISOTROPIC CONSTITUTIVE RELATIONS

The constitutive relations for bianisotropic media give the dyadic connection between the (absolute)
electric and magnetic fields �Ea, �Ha and the electric and magnetic flux densities �Da, �Ba [6, 7]:

�Da = εa · �Ea + ξa · �Ha (1)
�Ba = ζa · �Ea + μa · �Ha (2)

with the (absolute) permittivity and permeability dyadics εa, μa and the magnetoelectric dyadics ξa, ζa:
These come with dimensions As/Vm, Vs/Am, s/m, s/m, respectively.

With the following normalization which uses the free-space permittivity ε0 and permeability μ0,

�Ea =
√
ε0 �E, �Ha =

√
μ0
�H, �Da =

�D√
ε0
, �Ba =

�B√
μ0

(3)

the constitutive relations look like
�D = εr · �E + ξr · �H (4)
�B = ζr · �E + μr · �H (5)

where now the four constitutive dyadics are dimensionless: the relative permittivity and permeability
εr, μr, and the relative magnetoelectric dyadics ξr, ζr. The units for the four field/flux vectors are the
same (

√
VAs/m3 ); their dimension is square root of energy density.

Six-vector formalism [8] helps condense the constitutive relation into a matrix form:(
�D
�B

)
=

(
εr ξr
ζr μr

)(
�E
�H

)
= M

(
�E
�H

)
(6)

defining the material matrix M. The magnetoelecric dyadics can be decomposed in the following
manner:

M =

(
εr ξr
ζr μr

)
=
(

εr χ
T − jκT

χ+ jκ μr

)
(7)

where κ is the chirality dyadic (responsible for reciprocal magnetoelectric effects), and χ is the non-
reciprocal magnetoelectric dyadic [5].†

3. UNIMODULAR BI-ISOTROPIC MEDIA

In the following, let us focus the analysis on bi-isotropic‡ media, in which case the four material matrix
components are all multiples of the unit dyadic. Hence they can each be characterized by a single scalar,
possibly complex. The material matrix in Eq. (7) reduces in this case into

M =
(

εr χ− jκ
χ+ jκ μr

)
(8)

where the scalar κ is the chirality (Pasteur) parameter, and χ is the non-reciprocity (Tellegen) parameter.
In the present text, we look for materials for which the determinant of the material matrix M is

unity. In terms of the scalar parameters, this means
εrμr = 1 + χ2 + κ2 (9)

Let us give the label unimodular (bi)-isotropic media for media obeying Eq. (9), with a reference
to matrix theory in which square matrices whose determinant is ±1 are called unimodular [9, p. 60],
[10, p. 294].

Due to this one condition, the number of free parameters for unimodular isotropic media is reduced
to three.
† The operation (·)T stands for the transpose of the dyadic, and j is the imaginary unit, refering to the time-harmonic behavior of
the fields (here following the convention exp(jωt)).
‡ Bi-isotropic materials are non-anisotropic; in other words their response is independent on the vector direction of the exciting fields.
However, they may display magnetoelectric coupling [5].



Progress In Electromagnetics Research M, Vol. 81, 2019 15

3.1. Non-Magnetoelectric Media

The special case for which the magnetoelectric coefficients vanish (χ = 0, κ = 0) can be called a simple
isotropic medium. Simple isotropic media (SIM) that also obey the condition (9) satisfy

εr =
1
μr

(10)

In other words, their refractive index which is also the square root of the determinant of the M matrix).§
is unity, giving a reason to call non-magnetoelectric unimodular media as unirefractive media. Obviously
there is only one free parameter remaining for the class of simple isotropic unirefractive materials: the
ratio between the permittivity and permeability.

3.2. Non-Chiral Magnetoelectric Media

Allowing another dimension into the constitutive materials, let us consider non-chiral bi-isotropic media
with condition (9). Then κ = 0 and the magnetoelectric coupling is measured by the Tellegen parameter
χ. Instead of arbitrary permittivity, permeability, and Tellegen parameters, we now only have two
degrees of freedom. This state can be conveniently written in the following form [12]

M =
(
εr χ
χ μr

)
=

1
cos ϑ

(
1/η sinϑ
sinϑ η

)
(11)

Equation (11) shows directly that the determinant of M is unity.
The two new material parameters (η, ϑ) find clear physical interpretations. The parameter

η =
√
μr/εr can be considered as the (relative) wave impedance of the medium. The other parameter

ϑ = arctanχ measures the strength of the magnetoelectric coupling. For ϑ = 0 the medium distills
down to the simple isotropic medium. On the other hand, when |ϑ| increases and approaches the value
π/2, all four primary material parameters approach infinity and the matrix description loses meaning.

Indeed, these limits ϑ → ±π/2 lead to the PEMC medium. PEMC (perfect electromagnetic
conductor) medium, introduced in 2005 [13], is defined by one of the most basic conditions in
electromagnetics. It obeys the conditions

�D = M �B, �H = −M �E (12)

where M is (here unitless) PEMC parameter, having an admittance character. It generalizes the well-
known perfect electric conductor 1/M = 0 and perfect magnetic conductor M = 0 materials. In this
limit |ϑ| = π/2, the medium of Eq. (11) is a PEMC medium with M = sgn(ϑ)/η.

The PEMC medium is hence an extreme form of bi-isotropic Tellegen material. In theoretical
physics, PEMC is also known as axion medium [14].

The equality of the PEMC descriptions between Eqs.— (11) and (12) is not immediately obvious.
Nevertheless, writing the material matrix in form [13](

�D
�B

)
= M

(
�E
�H

)
, M = lim

q→∞ q

(
M 1
1 1/M

)
(13)

the conditions (12) are seen to follow from Eq. (11).‖
The two-parameter (η, ϑ) unimodular medium can be mapped into a plane as in Figure 1. There

the vertical axis leads from PEC material (η = 0, log(η) = −∞) through free space (η = 1, log(η) = 0) to
PMC (1/η = 0, log(η) = +∞). The horizontal direction expands the medium into the magnetoelectric
domain, and the limits for |ϑ| = π/2 correspond to PEMC media, with positive PEMC admittance
value M for ϑ = +π/2 and negative M for ϑ = −π/2. In [15], the medium spanned by the planes in
Figure 1 is called Minkowskian isotropic medium and in [16, 17] as Gibbsian isotropic medium.
§ This comes close to the concept of isorefractivity which was coined by P.L.E. Uslenghi for boundaries over which the square of the
refractive index εrμr does not change [11].

‖ The matrix M can also be written in the form q

(
M(1 + q−2) 1

1 1/M

)
which preserves the unit determinant [15, 17]. This leads

to the same result in the limit q → ∞ as Eq. (13).
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Figure 1. The unimodular Tellegen plane spanned by ϑ and η. The simple isotropic medium (SIM)
goes along the line ϑ = 0 while PEC and PMC occupy the lower and upper horizontal lines for “zero-
impedance” and “very-large-impedance” limits, respectively.
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Figure 2. The expanded unimodular Tellegen plane spanned by ϑ and η. Note the 2π-periodicity on
the ϑ axis.

Figure 2 extends the Tellegen plane by allowing all possible values for ϑ. When |ϑ| > π/2, the
permittivity and permeability parameters become negative (but η still remains positive). For values
ϑ = ±π, the medium is again simple-isotropic and the Tellegen parameter χ vanishes. However, due
to the negative character of εr and μr, the medium is “double-negative” (DNG) while along the SIM
line through vacuum, the parameters are positive (DPS). Due to periodicity in ϑ, the DNG lines on the
right and left correspond to the same medium. The DNG lines pass through the “anti-vacuum” point
where εr = −1, μr = −1, and log(η) = 0.
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3.3. Reciprocal Chiral Media

Another way to generalize the unirefractive simple isotropic medium into magnetoelectric domain is to
keep it reciprocal but to allow chirality; in other words the material is a special case of Pasteur medium.
Then the material matrix can be written in form

M =
(

εr −jκ
+jκ μr

)
=

1
cos ϑ

(
1/η −j sinϑ

+j sinϑ η

)
(14)

Due to the property detM = 1, this medium is also unimodular.
Again, here the limit ϑ = 0 leads to the simple isotropic medium with unit refractive index

(εr = 1/μr). On the other hand, the limit ϑ = π/2 corresponds to the so-called simple skewon
medium [18]:

�D = −jN �B, �H = −jN �E (15)

where now N is the skewon parameter. Using four-dimensional analysis [14], the 36 constitutive
parameters of a general bi-anisotropic medium can be naturally decomposed into three classes [14]:
principal part (with 20 parameters), skewon part (15 parameters), and the axion part (1 parameter).
While the single axion parameter corresponds to the PEMC admittance M , the skewon medium has
many more degrees of freedom. The simple-skewon medium has only one degree of freedom (N),
analogously to the PEMC medium.

The two parameters η and ϑ in Eq. (14) span the space of reciprocal unimodular bi-isotropic
materials, similar to the non-reciprocal case illustrated in Figure 2.

4. THREE-PARAMETER UNIMODULAR MEDIUM

The unimodularity requirement subtracted one degree of freedom from the bi-isotropic medium
description. Hence the most general unimodular bi-isotropic medium has three parameters. To visualize
this manifold, volumetric space is needed.

4.1. Angle of Non-Reciprocity

To represent the three-parameter unimodular medium that obeys Eq. (9), a natural way is to follow the
representations in Eqs. (11) and (14) and generalize these as

M =
(

εr χ− jκ
χ+ jκ μr

)
=

1
cos ϑ

(
1/η e−jψ sinϑ

ejψ sinϑ η

)
(16)

where the additional parameter ψ measures the degree of reciprocity: for ψ = 0, the magnetoelectric
effect is purely non-reciprocal (Tellegen medium), and for ψ = π/2 it is reciprocal (Pasteur medium).

As ϑ increases from 0 to π/2, the medium transforms from simple isotropic medium to a simple-
skewon–axion (SSA) medium with

�D =
1
η

(cosψ − j sinψ) �B, �H =
1
η

(− cosψ − j sinψ) �E (17)

Figure 3 maps general unimodular bi-isotropic media into the volume of a circular cylinder. The
simple isotropic (non-magnetoelectric) medium is mapped on the symmetry axis ranging from PEC
(η = 0) to PMC (1/η = 0). The radial coordinate is ϑ, and the side of the cylinder at ϑ = π/2 leads
to the SSA medium. There the special cases of PEMC (axion) medium (ψ = 0, π) and simple skewon
medium ψ = π/2, 3π/2 are mapped as the vertical lines ranging from PEC to PMC.

4.2. DH Versus DB Representation

A concise form to describe electromagnetic quantities calls for four-dimensional description [19] in which
the material relations occur between quantities that combine �E and �B into one two-form and �D and �H
into another. The constitutive relations between different notations are connected [20] but not always
in a trivial manner, as the relation in Eq. (13) shows.
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Figure 3. The three-parameter unimodular bi-isotropic medium illustrated within a circular cylinder
(parameters η, ϑ, ψ). The radial axis is ϑ, and the side of the cylinder corresponds to ϑ = π/2.

The constitutive relation for unimodular bi-isotropic media with matrix M in Eq. (16) changes its
form in this transformation:(

�D
�H

)
=

1
η

(
cos ϑ +e−jψ sinϑ

−e+jψ sinϑ cos ϑ

)(
�E
�B

)
=

1
η
H
(

�E
�B

)
(18)

Here the full matrix relation between �D, �H and �E, �B is no longer unimodular. However, the matrix H
in Eq. (18) is unimodular, and it has also other interesting properties.

For real-valued ϑ and ψ, the matrix H is unitary; in other words its inverse is equal to its conjugate
transpose. As a special case, for non-chiral materials (ψ = 0), H is a rotation matrix. A fundamental
rotation is ϑ = π/2 leading to the PEMC conditions (12) which “rotate” �B to �D and �E to − �H.

5. PROPERTIES OF UNIMODULAR MEDIA

5.1. Refractive Indices

The refractive index for a plane wave propagating in bi-isotropic unimodular media can be computed
from the constitutive parameters as [5]

n± =
√
εrμr − χ2 ± κ (19)

For non-chiral materials (κ = 0), the refractive index is unity, n± = 1, and they are called unirefractive.
Chiral media are birefringent; in other words the two eigenwaves have different propagation factors
(n+ �= n−). Still, the condition n+n− = 1 holds (cf. Eq. (9)).

Using the parameters ϑ,ψ, the refractive indices for unimodular media can be written in the form

n± =
1

cos ϑ

(√
1 − cos2 ψ sin2 ϑ± sinψ sinϑ

)
(20)

An even more concise form comes, by using the inverse hyperbolic function:
n± = e±β, where β = arsinh(sinψ tan ϑ) (21)

Figure 4 shows the variation of the two refractive indices as functions of ϑ and ψ. The birefringence
(which vanishes for κ = 0, ψ = 0) is strongest for reciprocal media (χ = 0, ψ = ±π/2) and it increases
without limit when the medium approaches the SSA condition ϑ = π/2. It is also worth noting that
n± are independent of the parameter η.
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Figure 4. Refractive indices n± for unimodular bi-isotropic media as function of ψ. (a) ϑ = π/8, (b)
ϑ = π/2 − 0.1.

5.2. Duality Transformation

The duality transformation is a very important operation in electromagnetics, and its usefulness arises
from the symmetry between electric and magnetic quantities in Maxwell equations [6]. The duality
transformation D between the pair of electric and magnetic fields that leaves free space invariant is the
following: (

�E
�H

)
d

= D
(

�E
�H

)
=
(

cosφ sinφ
− sinφ cosφ

)(
�E
�H

)
(22)

A natural question arises: how is a unimodular bi-isotropic medium affected by the duality
transformation? Since the pair (�D, �B) also [6] transforms in duality with the same matrix D, we
can write the transformed constitutive relation as(

�D
�B

)
d

= D
(

�D
�B

)
= DM

(
�E
�H

)
= DMD−1︸ ︷︷ ︸

Md

D
(

�E
�H

)
= Md

(
�E
�H

)
d

(23)

The determinant of the transformed unimodular medium is

det(Md) = det(D) · det(M) · det(D−1) = det(M) = 1 (24)

because the determinant of the duality matrix D is unity. This leads to the conclusion that a unimodular
bi-isotropic medium remains unimodular in the duality transformation.

6. CONCLUSION

The new class of materials defined and introduced in the present article, unimodular media, forms a
fundamental subclass of bi-isotropic magnetoelectric materials. The definition of unimodular media —
the requirement of unit determinant of the normalized material matrix — reduced the number of degrees
of freedom of fully bi-isotropic media from four to three. The approach in the article showed that the
essential qualities of unimodular media are condensed in the following three material parameters: the
strength of impedance η, the degree of magnetoelectricity ϑ, and the angle of reciprocity ψ.

The limiting cases of these parameters lead to fundamental electromagnetic material categories:
η = 0 corresponds to perfect magnetic conductor (PMC), 1/η = 0 to perfect electric conductor (PEC),
ϑ = ±π/2, χ = 0 to perfect electromagnetic conductor (PEMC) medium, ϑ = ±π/2, χ = ±π/2 to
simple-skewon medium, and ϑ = 0 leaves us with the simple isotropic medium with unit refractive
index.

The various visualizations of unimodular materials show regions in two- or three-dimensional space
in which the medium is located. The center of these regions correspond to free-space, and their
boundaries reach to the limiting extreme materials, like PEC, PMC, PEMC, and simple-skewon media.
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Admittedly, the dimension of the space of electromagnetic materials is far higher than three.
Possibilities to generalize the concept of unimodular media is straightforward by the definition
(requirement that the determinant of the material matrix remain unity), but finding the essential
physical quantities that span the emerging new dimensions is not. Attempts towards this direction are
to find unimodular classes of bi-anisotropic materials and tri-isotropic materials [21].

REFERENCES

1. Frohlich, H., Theory of Dielectrics: Dielectric Constant and Dielectric Loss, Oxford University
Press, 1987.

2. Milton, G. W., Theory of Composites, Cambridge University Press, UK, 2002.
3. Zouhdi, S., A. Sihvola, and M. Arsalane, editors, Advances in Electromagnetics of Complex Media

and Metamaterials, NATO Science Series: II: Mathematics, Physics, and Chemistry, Vol. 89, 504,
Kluwer Academic Publishers, Dordrecht, 2003.

4. Capolino, F., editor, Metamaterials Handbook, Theory and Phenomena of Metamaterials, CRC
Press, Boca Raton, Florida, 2009.

5. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral
and Bi-Isotropic Media, Artech House, Norwood, Massachusetts, 1994.

6. Lindell, I. V., Methods for Electromagnetic Field Analysis, Wiley and IEEE Press, New York, 1995.
7. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE/IET Publishing, London, UK,

1999.
8. Lindell, I. V., A. H. Sihvola, and K. Suchy, “Six-vector formalism in electromagnetics of bi-

anisotropic media,” Journal of Electromagnetic Waves and Applications, Vol. 9, No. 7/8, 887–903,
1995.

9. Born, M. and E. Wolf, Principles of Optics, 7th (expanded) Edition, Fourth printing, Cambridge
University Press, 2006.

10. Goldstein, H., Classical Mechanics, 2nd Edition, Addison-Wesley, Reading, Mass., 1981.
11. Uslenghi, P. L. E., “Exact scattering by isorefractive bodies,” IEEE Transactions on Antennas and

Propagation, Vol. 45, No. 9, 1382–1385, September 1997.
12. Sihvola, A. and I. V. Lindell, “PEMC, simple Skewon, and Minkowskian isotropic media:

Classification of bi-isotropic metamaterials,” Proceedings of the XXXI General Assembly and
Scientific Symposium of the International Union of Radio Science (URSI , 17–23 August 2014,
Beijing, China, file BD01.5.pdf, https://doi.org/10.1109/URSIGASS.2014.6929220.

13. Lindell, I. V. and A. Sihvola, “Perfect electromagnetic conductor,” Journal of Electromagnetic
Waves and Applications, Vol. 19, No. 7, 861–869, 2005.

14. Hehl, F. W. and Y. N. Obukhov, Foundations of Classical Electrodynamics, Birkhäuser, Boston,
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