Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-05-06
Runge-Kutta Exponential Time Differencing Scheme for Incorporating Graphene Dispersion in the FDTD Simulations
By
Progress In Electromagnetics Research Letters, Vol. 84, 15-21, 2019
Abstract
In this paper, the Runge-Kutta exponential time differencing (RK-ETD) scheme is used for incorporating Graphene dispersion in the finite difference time domain (FDTD) simulations. The Graphene dispersion is described in the gigahertz and terahertz frequency regimes by Drude model, and the stability of the implementation is studied by means of the von Neumann method combined with the Routh-Hurwitz criterion. It is shown that the presented implementation retains the standard non- dispersive FDTD time step stability constraint. In addition, the RK-ETD scheme is used for the FDTD implementation of the complex-frequency shifted perfectly matched layer (CFS-PML) to truncated open region simulation domains. A numerical example is included to validate both the stability and accuracy of the given implementation.
Citation
Omar Ramadan, "Runge-Kutta Exponential Time Differencing Scheme for Incorporating Graphene Dispersion in the FDTD Simulations," Progress In Electromagnetics Research Letters, Vol. 84, 15-21, 2019.
doi:10.2528/PIERL19012904
References

1. Geim, K. and K. S. Novoselov, "The rise of Graphene," Nat. Mater., Vol. 6, No. 3, 183-191, 2007.
doi:10.1038/nmat1849

2. Novoselov, K. S., V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for Graphene," Nature, Vol. 490, 192-200, 2012.
doi:10.1038/nature11458

3. Taflove, A. and S. Hangess, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech-House, Norwood, MA, 2005.

4. Bouzianas, D., N. Kantartzis, S. Antonopoulos, and T. Tsiboukis, "Optimal modeling of infinite Graphene sheets via a class of generalized FDTD schemes," IEEE Trans. Magn., Vol. 48, No. 2, 379-382, 2012.
doi:10.1109/TMAG.2011.2172778

5. Bouzianas, G. D., N. V. Kantartzis, T. V. Yioultsis, and T. Tsiboukis, "Consistent study of Graphene structures through the direct incorporation of surface conductivity," IEEE Trans. Magn., Vol. 50, No. 2, Art. No. 7003804, 2014.
doi:10.1109/TMAG.2013.2282332

6. Papadimopoulos, A. N., S. A. Amanatiadis, N. V. Kantartzis, I. T. Rekanos, T. T. Zygiridis, and T. D. Tsiboukis, "A convolutional PML scheme for the efficient modeling of Graphene structures through the ADE-FDTD technique," IEEE Trans. Magn., Vol. 53, No. 6, Art. No. 7204504, 2017.
doi:10.1109/TMAG.2017.2661812

7. Sounas, L. and C. Caloz, "Gyrotropy and nonreciprocity of Graphene for microwave applications dimitrios," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 4, 901-914, 2012.
doi:10.1109/TMTT.2011.2182205

8. Young, J. L., A. Kittichartphayak, Y. M. Kwok, and D. Sullivan, "On the dispersion errors related to (FD)2 TD type schemes," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1902-1909, 1995.
doi:10.1109/22.402280

9. Cox, S. M. and P. C. Matthews, "Exponential time differencing for stiff systems," J. Comput. Phys., Vol. 176, 430-455, 2002.
doi:10.1006/jcph.2002.6995

10. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Analyzing the stability of the FDTD technique by combining the Von Neumann method with the Routh-Hurwitz criterion," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 2, 377-381, 2001.
doi:10.1109/22.903100

11. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microw. Guided Wave Lett., Vol. 6, No. 12, 447-449, Dec. 1996.
doi:10.1109/75.544545

12. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 064302, 2008.