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Runge-Kutta Exponential Time Differencing Scheme for
Incorporating Graphene Dispersion in the FDTD Simulations
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Abstract—In this paper, the Runge-Kutta exponential time differencing (RK-ETD) scheme is used
for incorporating Graphene dispersion in the finite difference time domain (FDTD) simulations. The
Graphene dispersion is described in the gigahertz and terahertz frequency regimes by Drude model, and
the stability of the implementation is studied by means of the von Neumann method combined with
the Routh-Hurwitz criterion. It is shown that the presented implementation retains the standard non-
dispersive FDTD time step stability constraint. In addition, the RK-ETD scheme is used for the FDTD
implementation of the complex-frequency shifted perfectly matched layer (CFS-PML) to truncated open
region simulation domains. A numerical example is included to validate both the stability and accuracy
of the given implementation.

1. INTRODUCTION

In recent years, Graphene [1], which is considered to be a one atom two-dimensional (2-D) material, has
attracted tremendous attention due to its unique electrical, optical, and mechanical properties [2]. This
increases the interest in developing accurate and efficient numerical methods to simulate Graphene.
In the last decade, the finite difference time domain (FDTD) method [3], one of the popular discrete
time domain numerical techniques, has been successfully used in the simulation of electromagnetic wave
propagation in Graphene [4–6]. In this respect, Graphene dispersion is typically characterized in the
gigahertz (GHz) and terahertz (THZ) frequency regimes by a Drude model [7], and incorporated into the
FDTD algorithm by a direct integration auxiliary differential equation (DI-ADE) scheme that relates
the current density J and the electric field E. Nevertheless, by using a similar stability analysis given
in [8], it can be shown that the time step stability limit of the DI-ADE scheme of [4–6] is a function of
the Graphene parameters and introduces additional stability stringent criterion other than the standard
Courant-Friedrichs-Lewy (CFL) constraint and given by

ΔDI-ADE
tmax

=
ΔCFL

tmax√
1 + M/

(
ΔCFL

tmax

)2
/(4τ)

(1)

where M and τ are related to Graphene parameters, and ΔCFL
tmax

is the free space CFL time step limit.
In this paper, the Runge-Kutta exponential time differencing (RK-ETD) scheme [9] is used for the

FDTD implementation of Graphene dipsersion in the GHz and THz frequency ranges. By using the von
Neumann method combined with the Routh-Hurwitz criterion [10], it is found that the time step stability
limit of the presented implementation retains the standard non-dispersive CFL constraint. In addition,
the presented RK-ETD scheme is used for the FDTD implementation of the complex-frequency shifted
perfectly matched layer (CFS-PML) [11] to truncated open region simulation domains. The stability and
accuracy of the presented implementation are validated through a numerical example that investigates
the electromagnetic waves transmission through infinite Graphene layer.
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2. RK-ETD FDTD IMPLEMENTATION OF GRAPHENE DISPERSION

In GHz and THz frequency regimes, Graphene sheet, with a thickness of d, is typically characterized
by a Drude model with effective relative permittivity of [7]

εr (ω) = 1 +
M

jω(jωτ + 1)
(2)

where M = σ0/dε0, σ0 = e2τkBT
(

μc

kBT + 2 ln
(
e−μc/kBT + 1

))
/π�

2, τ is the scattering time, μc the
chemical potential, T the temperature, −e the electron charge, � the reduced Planck’s constant, and
kB the Boltzmann’s constant. Then, the Maxwell’s curl equations can be written in the time domain
as

−μ0
∂H(t)

∂t
= ∇× E(t) (3)

ε0
∂E(t)

∂t
= ∇× H(t) − J(t) (4)

where current density J is governed by the following first order differential equation:

∂J(t)
∂t

=
ε0M

τ
E(t) − 1

τ
J(t) (5)

Applying the standard leap-frog FDTD algorithm [3], the curl equations of (3) and (4) can be written
in the discrete time domain as

−μ0
δt

Δt
Hn = ∇̃ × E

∣∣∣n (6)

ε0
δt

Δt
En+ 1

2 = ∇̃ × H
∣∣∣n+ 1

2 − μtJn+ 1
2 (7)

where the fields spatial indices are not shown for the sake of brevity; Δt is the time step size; un = u(nΔt)
(u = E, H, J); δt and μt are, respectively, the center difference and central average operators with respect
to time defined as

δtu
n = un+ 1

2 − un− 1
2 (8)

μtu
n =

un+ 1
2 + un− 1

2

2
(9)

and ∇̃× is the discrete version of ∇× obtained by replacing the field’s spatial derivatives ∂/∂η
(η = x, y, z), by the central difference operator δη given by

δηu
n =

un
(
η + Δη

2 , · · ·
)
− un

(
η − Δη

2 , · · ·
)

Δη
(10)

where Δη is the space cell size in the η-direction, and finally the current density J is written in the
discrete time domain by incorporating the RK-TDE scheme [9] into Eq. (5). To this end, multiplying
Eq. (5) by et/τ and integrating over a single time step from t = nΔt to t = (n + 1)Δt, the following can
be obtained:

Jn+1 = e−Δt/τJn +
ε0M

τ
e−Δt/τ

∫ Δt

0
et′/τE

(
nΔt + t′

)
dt′ (11)

Applying the second-order RK-ETD scheme [9], Eq. (11) can be written as

Jn+1 = e−Δt/τJn + ε0M
(
1 − e−Δt/τ

)
En +

ε0Mτ

Δt

(
e−Δt/τ − 1 +

Δt

τ

)(
En+1 − En

)
(12)

In the following, the stability of the above RK-ETD-FDTD implementation is studied by means of von
Neumann method combined with the Routh-Hurwitz criterion [10].



Progress In Electromagnetics Research Letters, Vol. 84, 2019 17

3. STABILITY ANALYSIS OF THE RK-ETD FDTD IMPLEMENTATION

Considering a plane wave propagating in source-free homogeneous dispersive domain and replacing the
field quantities of Eqs. (6) and (7) by their complex amplitude, i.e., u → u0, (u = E,H,J) and the
operators δη , (η = x, y, z), δt and μt by their eigenvalues [10] as

δη → δ̂η =
j2 sin (kηΔη/2)

Δη
, (13)

δt → Z 1
2 −Z− 1

2 (14)

μt →
(
Z 1

2 + Z− 1
2

)
/2 (15)

where Z = ejωΔt is a complex variable corresponds to the amplification factor, and following the
procedure described in [10], the stability polynomial of the presented RK-ETD implementation can be
written as

S(Z) = 4Zν2 + (Z − 1)2
(

1 +
Δt

2ε0

Z + 1
Z − 1

σ̃ (Z)
)

= 0 (16)

where σ̃(Z) is the numerical conductivity which can be obtained directly from Eq. (12) as

σ̃(Z) = ε0M
Δt/τ

(
1 − e−Δt/τ

)
+
(
e−Δt/τ − 1 + Δt/τ

)
(Z − 1)

Δt/τ
(
Z − e−Δt/τ

) (17)

and ν is the courant number defined as
ν =

Δt

ΔCFL
tmax

(18)

with ΔCFL
tmax

being the free space CFL time step limit given by

ΔCFL
tmax

=
Δ

c0

√
D

(19)

where D ∈ {1, 2, 3} is the problem dimension, Δ = Δx = Δy = Δz the space cell size, and c0 = 1/
√

ε0μ0

the speed of light. Employing the Routh-Hurwitz criterion combined with the von Neumann method [10],
the stability polynomial of Eq. (16) can be written in the r-plane by substituting the transformation

Z =
r + 1
r − 1

(20)

into (16) together with (17) as

S(r) =
4∑

i=0

qir
i (21)

where

q0 = 4
(
1 − ν2

)(
1 + e−Δt/τ

)
,

q1 = 4
((

1 − ν2
)
−Mτ

) (
1 − e−Δt/τ

)
+ 2MΔt

(
1 + e−Δt/τ

)
,

q2 = 4ν2
(
1 + e−Δt/τ

)
+ 2MΔt

(
1 − e−Δt/τ

)
,

q3 = 4ν2
(
1 − e−Δt/τ

)
.

In this transformation, the exterior of the unit circle in the Z-plane is mapped onto the right half of
the r-plane. Therefore, if S(r) has no roots in the right half of the r-plane, then S(Z) will not have
any root outside the unit circle of the Z-plane. It must be noted that S(r) polynomial will not have
roots in the right half of the r-plane if all entries of the first column of the Routh table, which can be
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constructed from S(r), are non-negative [10]. To this end, the Routh table can be constructed from
Eq. (21) as [10]

q3 q1

q2 q0

c3,0 = q2 − q3q0

q2
0

q0 0

(22)

Forcing all entries of the first column of Eq. (22) to be non-negative, and considering the inequality

q0 = 4
(
1 − ν2

) (
1 + e−Δt/τ

)
≥ 0 (23)

and using Eq. (18), the time step limit can be obtained as

Δtmax = ΔCFL
tmax

(24)

Hence, the presented RK-ETD FDTD implementation of Graphene dispersion maintains the standard
non-dispersive CFL limit.

4. RK-ETD FDTD IMPLEMENTATION OF THE CFS-PML MESH TRUNCATING
TECHNIQUE

To model open region problems using the FDTD algorithm, efficient and reliable mesh truncating
techniques are required to truncate the computational domain. In this paper, the RK-ETD scheme
is employed into the FDTD implementation of the CFS-PML [11], which is considered to be one on
the most effective FDTD mesh truncating techniques. Based on the formulations of [11], the space
derivatives of the field equations in the CFS-PML regions at the domain boundaries are modified as

∂u

∂η
→ 1

Sη

∂u

∂η
(25)

where Sη, η = x, y, z, is the complex stretched coordinate metric given by

Sη = κη +
ση

αη + jωεo
(26)

where ση, κη, and αη are one-dimensional real positive metrics designed inside the CFS-PML region to
absorb the outgoing electromagnetic waves with minimal reflections and given by the following graded
polynomials:

ση = σmax
η

( η

D
)m

(27)

κη = 1 +
(
κmax

η − 1
) ( η

D
)m

(28)

αη = αmax
η

(
D − η

D

)mα

(29)

where η is the depth in the CFS-PML; D is the CFS-PML thickness; and mα and m are the graded
polynomial orders. Noting the identity

1
Sη

=
1
κη

− ση

κη

1
κη(αη + jωεo) + ση

(30)

Equation (25) can be expressed as
1
Sη

∂u

∂η
=

1
κη

∂u

∂η
− Qη,u (31)

where Qη,u is governed by the following the time domain ADE:

∂

∂t
Qη,u + ΓQη,u = Ω

∂u

∂η
(32)
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where Ω = (κηαη + ση)/κηεo and Γ = −ση/κ
2
ηεo. Based on Eqs. (31) and (32), and considering the

x-projection of Ampere’s law of Eq. (4), as an example, the Ez field component can be written in the
discrete form in CFS-PML region as

ε0
δt

Δt
En+1/2

z =
1
κx

∂Hy

∂x

∣∣∣∣n+1/2

− Q
n+1/2
x,Hy

− 1
κy

∂Hx

∂y

∣∣∣∣n+1/2

+ Q
n+1/2
y,Hx

− μtJ
n+ 1

2
z (33)

where Q
n+1/2
η,u , for (η, u) = (x,Hy) or (y,Hx), is obtained by discretizing Eq. (32) using the RK-ETD

scheme. For example, Q
n+1/2
x,Hy

can be obtained by multiplying Eq. (32) by eΓΔt and integrating over
a single time step from t = (n − 1/2)Δt to t = (n + 1/2)Δt, and applying the second-order RK-ETD
scheme [9], the following can be obtained:

Q
n+1/2
x,Hy

= e−ΔtΓQ
n−1/2
x,Hy

+
Ω
Γ
(
1 − e−ΓΔt

) ∂Hy

∂x

∣∣∣∣n−1/2

+
Ω

Γ2Δt

(
e−ΓΔt − 1 + Γ2Δt

)( ∂Hy

∂x

∣∣∣∣n+1/2

− ∂Hy

∂x

∣∣∣∣n−1/2
)

(34)

Similar equations can be obtained for the other field equations.

5. SIMULATION STUDY

To study the stability and accuracy of the presented RK-ETD FDTD implementation, consider the
problem of a plane-wave, with the fields of Ez and Hy propagating in the x-direction, normally incident
on an infinite free-standing Graphene sheet in free space. A computational domain, with a size of 4000Δ
and terminated by additional 10-cell thick CFS-PML, is considered in this study. The FDTD spatial
cell size is set to Δ = 20 nm, and the parameters for CFS-PML graded polynomials of Eqs. (27)–(29)
are taken as σmax

x = 0.8(m + 1)/(Δ
√

μ0/ε0), αmax
x = 0.05, κmax

x = 1, m = 3, and mα = 1. The
Graphene layer occupies one FDTD cell located at node 2000, with the parameters of T = 300 Kelvin,
μc = 0.5 eV, τ = 0.5 ps, and d = Δ = 20 nm. The time dependence of the excitation function is given
by g(t) = exp(−4π(t− tc)2/t2d), where td = 100Δt and tc = 3td. The source point (S) is located at node
10, and the observation point (O) is placed 20 FDTD cells away from the back of the Graphene layer
at node 2020. Fig. 1 shows the simulation domain geometry. The simulation is performed for 200,000
time steps.
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Figure 1. Simulation domain geometry, where S and O are the source and observation points,
respectively.

The stability of the implementation is studied first. Fig. 2(a) shows the electric field recorded at
the observation point, Egr

z (2020Δ) computed with a time step set to Δt = ΔCFL
t max = 66.712 × 10−18 s

as obtained with the presented RK-ETD FDTD scheme where no instability occurs over the whole
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Figure 2. Electric field recorded at node 2020 (Egr
z (2020Δ)) as obtained with Δt = ΔCFL

tmax
for the

presented RK-ETD formulation (a), and the DI-ADE formulation of [5] in the early time (b) and in the
late time (c).
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Figure 3. (a) Transmission coefficient magnitude for a normally incident plane wave through the
Graphene layer obtained by the presented RK-ETD FDTD implementation and the analytical approach.
(b) The relative error between the RK-ETD FDTD simulation and analytical result.

period of time. For the purpose of comparison, Figs. 2(b) and (c) show the field obtained by the DI-
ADE scheme [5] with Δt = ΔCFL

t max in the early time and in the late time, respectively. It can be seen
that the field starts to be unstable in the early time and increases without bound in the late time.
Therefore, the DI-ADE implementation of [5] does not maintain the standard CFL constraint. The
accuracy of the implementation is also investigated by computing the transmission coefficient of the
Graphene layer. For this case, an auxiliary simulation that uses the same configuration but replaces the
Graphene sheet by a vacuum layer is performed to record the reference field at the observation point,
i.e., Eair

z (2020Δ). Then, the time-domain data of Egr
z and Eair

z are Fourier transformed, and their
ratio determines the transmission coefficient. Fig. 3(a) shows the transmission coefficient magnitude
as a function of frequency as calculated by using the presented RK-ETD implementation (|TRK-ET D|)
and the analytical transmission (|Ta|) approach [12]. Fig. 3(b) shows the relative error between the two



Progress In Electromagnetics Research Letters, Vol. 84, 2019 21

solutions and computed by | (Ta − TRK−ET D)/ Ta|. Clearly, strong agreement can be observed between
the RK-ETD FDTD and the analytical results, where a relative error less than 0.08% is achieved
over the frequency range of interest, and this confirms the accuracy of the presented RK-ETD FDTD
implementation.

6. CONCLUSION

In this paper, the RK-ETD scheme is used for incorporating the Drude dispersion of Graphene into the
FDTD simulations in the THz frequency range. The implementation maintains the CFL stability limit
of the standard non-dispersive FDTD algorithm. The RK-ETD scheme is also employed in the FDTD
implementation of the CFS-PML mesh truncation technique. A numerical example which investigates
the electromagnetic wave transmission through Graphene layer confirms both the stability and accuracy
of the given implementations.
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