1. Hamidian, A. and V. Subramanian, "Right and left handed transmission lines for millimeter wave applications," German Microwave Conference Digest of Papers, 227-230, Berlin, 2010.
2. Horii, Y., T. Hayashi, and Y. Iida, "A novel composite right/left-handed transmission line composed of cylindrical left-handed unit cells," IEEE MTT-S International Microwave Symposium Digest, 1013-1016, San Francisco, CA, 2006.
3. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188
4. Ziolkowski, R. W., "Double negative metamaterial design, experiments, and applications," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 396-399, 2002.
doi:10.1109/APS.2002.1016107
5. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604
6. Smith, D. R., W. J. Padilla, D. C. Vier, et al. "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184
7. Decoopman, T., O. Vanbesien, and D. Lippens, "Demonstration of backward wave in a single split ring resonator and wire loaded finline," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 11, 507-509, Nov. 2004.
doi:10.1109/LMWC.2004.837075
8. Decoopman, T., A. Marteau, E. Lheurette, et al. "Left-handed electromagnetic properties of split- ring resonator and wire lzoaded transmission line in a fin-line technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1451-1457, Apr. 2006.
doi:10.1109/TMTT.2006.871356
9. Salehi, H. and R. R. Mansour, "A new realization of left-handed transmission lines employing a coaxial waveguide structure," IEEE MTT-S Int. Dig., 1941-1944, Long Beach, CA, Jun. 2005.
10. Saleh, H. and R. R. Mansour, "Analysis, modeling, and applications of coaxial waveguide-based left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3489-3497, Nov. 2005.
doi:10.1109/TMTT.2005.857335
11. Caloz, C., H. Okabe, T. Iwai, et al. "Transmission line approach of left-handed (LH) material," Proc. USNC/URSI Nat. Rad. Sci. Meeting, 39, San Antonio, TX, Jun. 2002.
12. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2701-2712, Dec. 2002.
doi:10.1109/TMTT.2002.805197
13. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, et al. "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069
14. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna designusing metamaterial transmission lines," Radio Science, Vol. 52, 1510-1521, 2017.
doi:10.1002/2017RS006313
15. Sabah, C., "Composition of non-concentric triangular split ring resonators and wire strip for dual-band negative index metamaterials," IEEE Microwave Symposium, 303-306, 2010.
16. Xu, H. X., G. M. Wang, C. X. Zhang, et al. "Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry," Photonics & Nanostructures Fundamentals & Applications, Vol. 11, No. 1, 15-28, 2013.
doi:10.1016/j.photonics.2012.06.011
17. Fiori, M., P. Muse, and G. Sapiro, "Topology constraints in graphical models," Advances in Neural Information Processing Systems, 791-799, 2012.
18. Songsiri, J. and L. Vandenberghe, "Topology selection in graphical models of autoregressive processes," Journal of Machine Learning Research, Vol. 11, No. 2, 2671-2705, 2014.
19. Sajith, K., J. Gandhimohan, and T. Shanmuganantham, "Design of SRR loaded octagonal slot CPW fed wearable antenna for EEG monitoring applications," Proceedings of IEEE International Conference on Circuits and Systems (ICCS), 49-53, Thiruvananthapuram, 2017.
doi:10.1109/ICCS1.2017.8325961
20. Haghighi, S. S., A. Heidari, and M. Movahhedi, "A three-band substrate integrated waveguide leaky-wave antenna based on composite right/left-handed structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4578-4582, Oct. 2015.
doi:10.1109/TAP.2015.2456951
21. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, et al. "Hexa-band planar antenna with asymmetric fork-shaped radiators for multiband and broadband communication applications," IET Microwaves, Antennas & Propagation, Vol. 10, No. 5, 471-478, 2016.
doi:10.1049/iet-map.2015.0608
22. Alhawari, A. R. H., A. Ismail, and M. A. Mahdi, "Compact ultra-wideband metamaterial antenna," Proceedings of 16th Asia-Pacific Conference on Communications (APCC), 64-68, Auckland, New Zealand, Oct. 31--Nov. 3, 2010.
23. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, et al. "Interaction between closely packed array antenna elements using metasurface for applications such as MIMO systems and synthetic aperture radars," Radio Science, Vol. 53, No. 11, 1368-1381, 2018.
doi:10.1029/2018RS006533
24. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, et al. "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 198, 2018.
doi:10.3390/electronics7090198
25. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, et al. "Study on isolation improvement between closely packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures," IET Microwaves, Antennas & Propagation, Vol. 12, No. 14, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103