Vol. 82
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-12
Coupling Matrix Optimization Synthesis for Filters with Constant and Frequency-Variant Couplings
By
Progress In Electromagnetics Research Letters, Vol. 82, 73-80, 2019
Abstract
This paper presents a quickly converging optimization technique for synthesis of filters with constant and frequency-variant couplings (FVC). Unlike the works so far appeared in the literature, the proposed technique is not based on the direct optimization of scattering parameters with assigned topology, but it consists of two procedures. Firstly, an FVC coupling matrix with assigned topology is suitably transformed by means of scaling and rotations for obtaining the new coupling matrix with constant couplings. Then, the cost function is constructed as a least squares problem involving both the eigenvalues of the new coupling matrix with constant couplings and that of the transversal coupling matrix. The solution is found via the solvopt optimization method. Two numerical examples with different topologies and specifications are synthesized to show the validation of the method presented in this paper.
Citation
Gang Li, "Coupling Matrix Optimization Synthesis for Filters with Constant and Frequency-Variant Couplings," Progress In Electromagnetics Research Letters, Vol. 82, 73-80, 2019.
doi:10.2528/PIERL19011103
References

1. Amari, S., "Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 9, 1559-1564, Sep. 2000.
doi:10.1109/22.869008

2. Cameron, R. J., C. Kudsia, and R. Mansour, "Coupling matrix synthesis of filter networks," Microwave Filters for Communication Systems, 1st Edition, Hoboken, NJ, USA, 2007.

3. Kozakowski, P., A. Lamecki, P. Sypek, and M. Mrozowski, "Eigenvalue approach to synthesis of prototype filters with source/load coupling," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 2, 98-100, Feb. 2005.
doi:10.1109/LMWC.2004.842838

4. Szydlowski, L., N. Leszczynska, and M. Mrozowski, "Dimensional synthesis of coupled-resonator pseudoelliptic microwave bandpass filters with constant and dispersive couplings," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 8, 1634-1646, Aug. 2014.
doi:10.1109/TMTT.2014.2332500

5. Gimenez, A. and D. Pedro, "A dual-TZ extraction technique for the synthesis of cross-coupled prototype filters," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 10, 777-779, Oct. 2016.
doi:10.1109/LMWC.2016.2601295

6. He, Y., G. Wang, and L.-G. Sun, "Direct matrix synthesis approach for narrowband mixed topology filters," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 5, 301-303, Apr. 2016.
doi:10.1109/LMWC.2016.2549098

7. Zhao, P. and K.-L. Wu, "A direct synthesis approach of bandpass filters with extracted-poles," Proc. Asia-Pacific Microw. Conf., 25-27, Seoul, South Korea, Nov. 2013.

8. Yang, Y., M. Yu, and Q.-Y. Wu, "Advanced synthesis technique for unified extracted pole filters," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 12, 4463-4472, Dec. 2016.
doi:10.1109/TMTT.2016.2623618

9. He, Y., G.Wang, X.-T. Song, and L.-G. Sun, "A coupling matrix and admittance function synthesis for mixed topology filters," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 12, 4444-4454, Oct. 2016.
doi:10.1109/TMTT.2016.2614666

10. Tamiazzo, S. and G. Macchiarella, "Synthesis of cross-coupled prototype filters including resonant and non-resonant nodes," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 10, 3408-3415, Jul. 2015.
doi:10.1109/TMTT.2015.2457421

11. Amari, S. and U. Rosenberg, "Synthesis and design of novel in-line filters with one or two real transmission zeros," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 5, 1464-1478, May 2004.
doi:10.1109/TMTT.2004.827023

12. He, Y., G. Macchiarella, G. Wang, W. Wu, L. Sun, L. Wang, and R. Zhang, "A direct matrix synthesis for in-line filters with transmission zeros generated by frequency-variant couplings," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 6, 1780-1789, Apr. 2018.
doi:10.1109/TMTT.2018.2791940

13. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 6, 312-314, May 2012.
doi:10.1109/LMWC.2012.2197386

14. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

15. SolvOpt manual and SolvOpt Toolbox for matlab, Available: http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/index.html.