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Coupling Matrix Optimization Synthesis for Filters with Constant
and Frequency-Variant Couplings

Gang Li*

Abstract—This paper presents a quickly converging optimization technique for synthesis of filters with
constant and frequency-variant couplings (FVC). Unlike the works so far appeared in the literature, the
proposed technique is not based on the direct optimization of scattering parameters with assigned
topology, but it consists of two procedures. Firstly, an FVC coupling matrix with assigned topology
is suitably transformed by means of scaling and rotations for obtaining the new coupling matrix with
constant couplings. Then, the cost function is constructed as a least squares problem involving both
the eigenvalues of the new coupling matrix with constant couplings and that of the transversal coupling
matrix. The solution is found via the solvopt optimization method. Two numerical examples with
different topologies and specifications are synthesized to show the validation of the method presented
in this paper.

1. INTRODUCTION

Modern wireless communication systems require complex filters with high performance and compact
size. Synthesis techniques for such filters are one of the most researched topics in the field of high
frequency electronics. Over the past few decades, a lot of efforts have been made for the direct synthesis
of narrowband microwave filters. Basically, two topological configurations, namely cross-coupled [1–5]
and extracted-pole [6–10], are introduced to generate finite transmission zeros (TZs) which are crucial to
the performance of the filter. All of them assume that inter-resonator couplings are frequency-invariant.
This assumption is true for a limited class of filters in a narrow frequency band. However, when the
coupling structure of the filter has strong dispersion effect, which is explicit under broadband frequency
condition, the frequency-invariant coupling coefficient usually does not reflect the actual behavior of
the distributed coupling structure. The accuracy of the traditional coupling matrix synthesis method
descends badly. Various researchers have demonstrated that taking into account frequency dependence
of couplings allows generating additional transmission zeros. Combining cross-couplings with frequency-
variant couplings allows reducing the overall number of couplings for a given set of transmission zeros.
Moreover, it has been shown that frequency-variant couplings can generate transmission zeros in an
in-line topology [11, 12]. But in [11], synthesis of the low-pass prototype for cross-coupled cavity filters
with FVC has not been researched for more complex topologies. In [12], a general direct synthesis
approach is presented for synthesizing in-line filters with multiple TZs. However, the number of TZs
in [12] is N/2 (N is filter order). In [13], a general synthesis method for frequency-variant coupling
matrix with user defined topology is presented. However, the approach in [13] cannot be applied to
cross coupled filters with FVC which have multiple source-cavity couplings load-cavity couplings and
direct source-load coupling. All the works in the literature [11–13] suffer from that there is no general
synthesis technique allowing the design of filters including constant and frequency variant couplings
with assigned topology.
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In order to overcome the mentioned drawbacks, we present, in this paper, a quickly converging
optimization technique for synthesis of filters including constant and FVC with assigned topology.
Compared with the synthesis approach in the literature [11–13], the method presented in this paper has
following advantages: First, it is suitable for cross coupled filters with constant and FVC which have
multiple source-cavity couplings and load-cavity couplings, even including direct source load couplings.
Second, instead of directly optimizing coupling matrix with FVC, it optimizes the coupling matrix with
constant couplings after matrix transformation, and the optimization is easy to converge. Third, with
the direct source load coupling, the maximum number of TZs can be as many as the filter order N .

This paper is organized as follows. Basic theory on the coupling matrix transformation process is
detailed in Section 2. In Section 3, two numerical examples with different topologies and specifications
are synthesized to show the validation of the technique presented in this paper. Section 4 provides the
conclusion.

2. BASIC THEORY

2.1. Matrix Transformation

The topology of cross coupled filters with constant and frequency-variant couplings is shown in Fig. 1.
Generally, the inter-resonator coupling coefficients are frequency variant while the rest of the coupling
coefficients are constant. In the normalized low-pass frequency domain, the nodal voltage equation of
the network can be expressed as follows:(−jG + M0 + ωB1

)
V = AV = − je (1)

where matrix G is of size (N + 2) ∗ (N + 2) with all its entries null except for the first and last diagonal
elements which are equal to unity, [G]1,1 = [G]N+2,N+2 = 1. Matrix M0 is of size (N + 2) ∗ (N + 2)
with all its entries non-zero constants except for the first and last diagonal elements which are equal to
null, [M0]1,1 = [M0]N+2, N+2 = 0. ω is the normalized frequency. Matrix A = −jG + M0 + ωB1. The
excitation vector is e = [10 . . . 0]T . V is the node voltage column vector. Matrix B1 is an (N+2)∗(N+2)
square matrix defined as follows:

B1=

⎡
⎣ 0 . . . 0

... B
...

0 . . . 0

⎤
⎦ (2)

where matrix B is a square symmetric real matrix of size N ∗ N which is defined as:

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a12 a13 . . . . . . a1N

a12 0 a23 . . . . . . a2N

a13 a23 1 a34 . . .
...

...
... a34 1 . . .

...

a1,N−1 . . .
... . . . 0 aN−1,N

a1N a2N . . . . . . aN−1,N 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Element values on the principal diagonal of the matrix B imply different meanings. The element value
1 indicates that the node of the position corresponds to the resonator, while the value 0 corresponds
to a non-resonant cavity. The other non-diagonal elements are generally non-zero constants, indicating
frequency-variant couplings. According to the filter theory, S-parameters can be directly related to the
coupling coefficients as follows: {

S11 = 1 + 2j
[
A−1

]
1,1

S21 = −2j
[
A−1

]
N+2,1

(4)

where matrix A is given by A = −jG+M0 +ωB1. It is noted that the filter frequency response remain
the same unless the elements of A−1 which appear in Eq. (4) are changed. Therefore, a series of scaling
and similarity transformations can be performed on the coupling matrix with FVC. Without changing
[A−1]1,1 and [A−1]N+2,1, the frequency-variant coupling elements of matrix B can be converted to
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zero, and the frequency response of the filter remains unchanged. Based on matrix theory, any real
and symmetric square matrix can always be diagonalized. The transformation matrix T is defined as
follows:

T=

⎡
⎣ 1 . . . 0

... U
...

0 . . . 1

⎤
⎦ (5)

Matrix U is an N ∗ N square matrix containing normalized eigen-vectors of matrix B. When matrix
transformation is applied into Eq. (1), the following equations are obtained:⎧⎪⎨

⎪⎩
G0

new = TTGT=G
B1

new = TTB1T
M0

new = TTM0T
(6)

Obviously matrix G remains unchanged before and after matrix transformation. Matrix B1
new is as

follows:

B1
new=

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 0
0 Λ1 0 0 0
... 0

. . . 0
...

0 0 0 ΛN 0
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎦ (7)

where Λi is the eigenvalues of matrix B. When B is a positive definite matrix, its eigenvalues are all
positive. Eigenvalue Λi can be understood as the capacitance value of the filter network, which is the
physical reason that B must be a positive definite matrix. Eq. (1) is transformed into the following
form: (−jG + M0

new + ωB1
new

)
V = −je (8)

Keep in mind that our aim is to transform Eq. (8) into the form:(−jG + M0
final + ωB1

final

)
V = − je (9)

where matrix B1
final is identical to (N + 2) ∗ (N + 2) identity matrix except for that [B1

final ]1,1 =
[B1

final ]N+2, N+2 = 0. By multiplying the ith column and ith row of the matrix (−jG+ M0
new +ωB1

new )
by 1/sqrt(Λi), we can get Eq. (9). This operation is mathematically equivalent to the transformation
as follows: {

M0
final = SM0

newS

B1
final = SB1

newS
(10)

While the transformation matrix S is defined as follows:

S=

⎡
⎢⎢⎢⎢⎣

1 0 . . . 0 0
0 1/

√
Λ1 0 0 0

... 0
. . . 0

...
0 0 0 1/

√
ΛN 0

0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎦

where Λi is the eigenvalues of matrix B. It should be noted that the coupling matrix M0
final is a matrix

only with constant couplings, and the topology is totally different from the previous one with constant
and frequency variant couplings.

2.2. Cost Function

According to the classical coupling matrix synthesis method [14], the transversal coupling matrix Mtrans

can be expressed as follows:

Mtrans=

⎡
⎢⎣ 0 rT

S rSL

rS Λ rL

rSL rT
L 0

⎤
⎥⎦ (11)
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Figure 1. General topology of cross coupled filters with constant and frequency-variant couplings.

where Λ is a diagonal matrix, and rSL, rT
S , rS , rL, and rT

L are non-zero constants. According to the filter
theory, if the transformed coupling matrix M0

final is similar to the transversal coupling matrix Mtrans ,
the corresponding frequency responses of the two coupling matrices are the same. So, the cost function
is constructed as follows:

Cost = (λtrans − λfinal )T (λtrans − λfinal ) (12)

where λtrans = [λp
i ;λ

z1
i ;λz2

i ;λc
i ], where λp

i are the eigenvalues of the analytically synthesized transversal
coupling matrix, λz1

i the eigenvalues of upper principal submatrix obtained by deleting the last row and
column of the transversal matrix Mtrans , λz2

i the eigenvalues of lower principal submatrix obtained by
deleting the first row and column of the transversal matrix Mtrans , and λc the eigenvalues of central
submatrix obtained by deleting both the first and the last rows and columns of the transversal matrix
Mtrans . λfinal is the vector of eigenvalues created in each iteration of the optimization routine. The
element meaning of λfinal is the same as that of λtrans . The minimization of the cost function can be
performed using Solvopt algorithm [15]. The optimization flowchart is shown in Fig. 2.

Assign optimization 

topology

Local optimization cost 

function (Solvopt)
Best cost < target

No

Yes
End

Start
Matrix transformation and 

construct cost function

Figure 2. Optimization flowchart of the method presented in this paper.

3. EXPERIMENT RESULTS

For verification of the synthesis method presented in this paper, two examples are synthesized in this
section. The initial values of optimization are random numbers whose values lie within specified limits
[−1, 1]. The Solvopt algorithm uses numerical gradient, and the optimization process will terminate
until the value of the cost function drops below 10−13.

3.1. Example One

The first synthesized filter example is a fourth-order 20-dB return loss with different TZs numbers.
There are four TZs located at −3.2j, −2.1j, 1.6j and 2.4j. The topology is shown in Fig. 3(a), and the
response is shown in Fig. 3(b).
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Figure 3. Topology and response of the filter. (a) Filter topology. (b) Filter response.

Using the method presented in Section 2, we obtain the coupling coefficients as follows.

M0 =

⎡
⎢⎢⎢⎢⎢⎣

0 0.6519 0.7753 0 0 −0.0309
0.6519 0.1951 0.4453 −0.1252 0 0
0.7753 0.4453 0.9917 0 0 0

0 −0.1252 0 0.4487 −0.5895 0.5420
0 0 0 −0.5895 0.9003 0.8570

−0.0309 0 0 0.5420 0.8570 0

⎤
⎥⎥⎥⎥⎥⎦

B1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 0 0.7716 0 0
0 0 1 0 0 0
0 0.7716 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

The value of the cost function is 4.7949e − 14. The optimization time is less than 1.57 s. The
polynomials response and matrix response agree well. Fig. 3(a) shows that coupling coefficient between
resonator 1 and resonator 3 is frequency variant, and remaining coupling coefficients are constant. From
Fig. 3(b), we can see that the number of TZs can be as many as the filter order.

3.2. Example Two

The second synthesized example is inline filters. The filter order is fifth-order. Return loss is 2-dB.
Other specifications are shown as follows:

Prototype 1A: There are three TZs located at −2.1j, 1.6j, and 2.4j. The topology is shown as
Fig. 4(a), and the response is shown in Fig. 4(b)

M0 =

⎡
⎢⎢⎢⎢⎢⎣

0 0.9467 0 0 0 0
0.9467 0.6053 0.7934 0 0 0

0 0.7934 −0.8126 0.7607 0 0
0 0 0.7607 −0.1080 0.8789 0
0 0 0 0.8789 −0.8273 0.9007
0 0 0 0 0.9007 0

⎤
⎥⎥⎥⎥⎥⎦
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B1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 0.3306 0 0 0
0 0.3306 1 −0.44417 0 0
0 0 −0.4417 1 0.4185 0
0 0 0 0.4185 1 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

The value of the cost function is 3.3243e − 14. The optimization time is less than 1.03 s. The
polynomials response and matrix response agree well. Fig. 4(a) shows that all inter-resonator coupling
coefficients are frequency variant. From Fig. 4(b), we can see that the number of TZs equals number of
frequency-variant couplings.
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Figure 4. Topology and response of prototype 1A. (a) Filter topology. (b) Filter response.

Prototype 1B: There are four TZs located at −2.1j, 1.6j, 2.4j, and −3.2j. The topology is shown
in Fig. 5(a), and the response is shown in Fig. 5(b)

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0.7753 0 0 0 0.0309
0.7753 0.9917 0.9790 0 0 0

0 0.9790 −0.7351 −0.4991 0 0
0 0 −0.4991 0.4693 −0.9794 0
0 0 0 −0.9794 0.9003 0.8570

0.0309 0 0 0 0.8570 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 −0.6436 0 0 0
0 −0.6436 1 0.0810 0 0
0 0 0.0810 1 −0.5345 0
0 0 0 −0.5345 1 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

The value of the cost function is 6.2969e − 14. The optimization time is less than 1.36 s. The
polynomials response and matrix response agree well. Fig. 5(a) has one more sourceload coupling than
Fig. 4(a). From Fig. 5(b), we can see that the number of TZs can be as many as the filter order.
Comparing Fig. 3 and Fig. 5, it is noted that filter responses are the same, but the topologies are totally
different.
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Figure 5. Topology and response of prototype 1B. (a) Filter topology. (b) Filter response.

4. CONCLUSION

An optimization synthesis approach for filter with constant and frequency-variant couplings is presented
in this paper. Frequency-variant couplings (FVC) can generate and control multiple finite transmission
zeros (TZs). It is valid for cross coupled filters with constant and frequency-variant couplings which have
multiple source-cavity couplings and load cavity couplings, even including direct source-load coupling.
Two examples with different topologies and specifications are synthesized to show the validation of the
method presented in this paper. Although the analytical synthesis method is covered in this paper,
further research work is needed to allow a wider practical use of these filters in the future.
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