Vol. 81
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-02-18
Modeling of the Electromagnetic Field of a Rectangular Waveguide with Side Holes
By
Progress In Electromagnetics Research Letters, Vol. 81, 127-132, 2019
Abstract
In this work, we simulate the electromagnetic field of a rectangular waveguide with side holes. The Helmholtz equations for a given waveguide and dispersion equations are solved. As a result of numerical calculations, the obtained numerical values build the dependence of the modulus of the effective impedance on the wavelength for different types of waves.
Citation
Islam Jamal Islamov, Elshad Gulam Ismibayli, Yusif Gazi Gaziyev, Simnara Raffaq Ahmadova, and Rashid Shaban Abdullayev, "Modeling of the Electromagnetic Field of a Rectangular Waveguide with Side Holes," Progress In Electromagnetics Research Letters, Vol. 81, 127-132, 2019.
doi:10.2528/PIERL19011102
References

1. Chen, S. C. and W. C. Chew, "Electromagnetic theory with discrete exterior calculus," Progress In Electromagnetics Research, Vol. 159, 59-78, 2017.
doi:10.2528/PIER17051501

2. Jia, M. M., S. Sun, Y. Li, Z.-G. Qian, and W. C. Chew, "Acceleration of perturbation-based electric field integral equations using fast fourier transform," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4559-4564, 2016.
doi:10.1109/TAP.2016.2593930

3. Chew, W. C., M. S. Tong, and B. Hu, "Integral equation methods for electromagnetic and elastic waves," San Rafael, Morgan & Claypool, CA, USA, 2008.

4. Na, D.-Y., H. Moon, Y. A. Omelchenko, and F. L. Teixeira, "Local, explicit, and charge-conserving electromagnetic particle-in-cell algorithm on unstructured grids," IEEE Transactions on Plasma Science, Vol. 44, No. 8, 1353-1362, 2016.
doi:10.1109/TPS.2016.2582143

5. Chen, S. and W. C. Chew, "Discrete electromagnetic theory with exterior calculus," 2016 Progress in Electromagnetic Research Symposium (PIERS), 896-897, Shanghai, China, August 8–11, 2016.

6. Kim, H.-M., H. Jang, P. Pramudita, M.-K. Kim, and Y.-H. Lee, "Monolithic integration of selfaligned nanoisland laser with shifted-air-hole waveguide," Optics Express, Vol. 26, No. 10, 12569-12578, 2018.
doi:10.1364/OE.26.012569

7. Reimann, F., P. Michel, U. Lehnert, and U. van Rienen, "Rayleigh-Ritz based expansion method for wakefields in dielectrically lined rectangular waveguides," Journal of Computational Physics, Vol. 372, 299-315, 2018.
doi:10.1016/j.jcp.2018.06.004

8. Zemlyakov, V., S. Krutiev, and M. Tyaglov, "Complex geometry apertures for resonant diaphragms in rectangular waveguides," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 18, 2470-2480, 2018.
doi:10.1080/09205071.2018.1518160

9. Koenen, C., G. F. Hamberger, U. Siart, T. F. Eibert, H. U. Nickel, G. D. Conway, and U. Stroth, "A low-reflectivity vacuum window for rectangular hollow waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 128-135, 2018.
doi:10.1109/TMTT.2017.2740171

10. Bird, T. S., V. Lingasamy, K. T. Selvan, et al. "Improved finite-range gain formula for open-ended rectangular waveguides and pyramidal horns," IET Microwaves Antennas & Propagation, Vol. 11, No. 14, 2054-2058, 2017.
doi:10.1049/iet-map.2016.1106

11. Yeap, K. H., E. V. S. Wong, H. Nisar, et al. "Attenuation in circular and rectangular waveguides," Electromagnetics, Vol. 37, No. 3, 171-184, 2017.
doi:10.1080/02726343.2017.1301198

12. Scott, M. M., D. L. Faircloth, J. A. Bean, et al. "Permittivity and permeability determination for high index specimens using partially filled shorted rectangular waveguides," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1298-1301, 2016.
doi:10.1002/mop.29786

13. He, B., C. Lu, N. N. Chen, D. S. Lin, M. Rosu, and P. Zhou, "Time decomposition method for the general transient simulation of low-frequency electromagnetics," Progress In Electromagnetics Research, Vol. 160, 1-8, 2017.

14. Chen, S. C. and W. C. Chew, "Electromagnetic theory with discrete exterior calculus," Progress In Electromagnetics Research, Vol. 159, 59-78, 2017.

15. Islamov, I. J., E. G. Ismibayli, M. H. Hasanov, Y. G. Gaziyev, and R. S. Abdullayev, "Electrodynamics characteristics of the no resonant system of transverse slits located in the wide wall of a rectangular waveguide," Progress In Electromagnetics Research Letters, Vol. 80, 23-29, 2018.
doi:10.2528/PIERL18102904

16. Kamada, S., T. Okamoto, S. E. El-Zohary, A. Mori, and M. Haraguchi, "Design optimization and resonance modes of a plasmonic sensor based on a rectangular resonator," Optics Communication, Vol. 427, 220-225, 2018.
doi:10.1016/j.optcom.2018.06.076

17. Azeez, Y. F., R. J. Collier, N. M. Ridler, and P. R. Young, "Establishing a new form of primary impedance standard at millimeter-wave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 68, No. 1, 294-296, 2019.
doi:10.1109/TIM.2018.2872499

18. Wang, W., J. Jin, X.-L. Liang, and Z.-H. Zhang, "Broadband dual polarized waveguide slotted antenna array," IEEE Proc. Antennas and Propagat. Society International Symposium 06, 2237-2240, 2006.