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Abstract—In this work, we simulate the electromagnetic field of a rectangular waveguide with side
holes. The Helmholtz equations for a given waveguide and dispersion equations are solved. As a result
of numerical calculations, the obtained numerical values build the dependence of the modulus of the
effective impedance on the wavelength for different types of waves.

1. INTRODUCTION

The intensive development of microwave technology has led to the emergence of a variety of
electrodynamic tasks. One of these tasks is the study of filters with wave leakage, designed for high
power levels. From a technical viewpoint, such filters represent the main waveguide connected to the
side waveguides through a system of round or elliptical holes. As a connection in such devices, a system
of slits of various shapes and sizes can be used. Despite the diversity of communication elements,
their frequency is common to all. As known, from a mathematical point of view, the calculation of
electromagnetic fields in such structures is reduced to solving a boundary value problem. In this case,
the satisfaction of the boundary conditions of the components of the electric and magnetic fields on the
coupling elements is extremely difficult. The representation of boundary conditions of components of
the electric and magnetic fields on the coupling elements on openings of a rectangular waveguide and
the boundary conditions of an impedance type outside the openings in the form of a linear combination
of electric and magnetic fields allow us to construct a system of integral equations for the problem of
radiation from a finite waveguide antenna array with an impedance flange. One approach to solving
such problems is to use approximate boundary conditions [1–6]. If Eτ and Hτ are tangential components
of an electromagnetic field on a certain interface between two regions, the concept of surface impedance
Zs is introduced (in the general case, complex and anisotropic), connecting these components by the
relation

Eτ = ZsHτ . (1)

A review of a large number of tasks, whose effective solution is made possible by the introduction
of impedance boundary conditions, is given in [7–11].

2. FORMULATION OF THE PROBLEM

Let us consider a rectangular waveguide, in which a row of holes of a circular shape is located on a
narrow wall along a line parallel to the z axis, as shown in Fig. 1.

In a rectangular coordinate system whose origin coincides with one of the vertices of the rectangle,
we introduce the following notation: α — the size of the wide wall of the main waveguide, b — the size
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Figure 1. A rectangular waveguide with holes in narrow walls.

of the narrow wall of the main waveguide, R — the hole radius, h — the distance between the centers
of the holes.

Let us consider the propagation of magnetic waves in the current waveguide, provided that the
surface impedance of a narrow wall is known, and it can be calculated from the relationships given
in [12–17].

3. SOLUTION

The electromagnetic field in such a waveguide is determined through a longitudinal component that is
satisfied by the Helmholtz equation.

∂2Ḣz
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+
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∂y2
+
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∂z2
+ k2Ḣz = 0, (2)

where k = 2π
λ is the wave number.

Inhomogeneous impedance boundary conditions on a narrow wall at x = α

Ėy = −Zs(y, z)Ḣz. (3)

The remaining walls are ideally conductive.
Periodic surface impedance can be represented as a double Fourier series.
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where coefficients Apr and Cpr are calculated from the relations given in [17, 18].
Since the surface impedance is a periodic function of the coordinate z, the solution of Equation (3)

will be sought in the form of a Fourier series.
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where βS = β0 + p2π
n , γ

(s)2
xn = k2 − β2

s − (nπ
b )2, β0 — complex constant propagation to be determined.

Based on Maxwell’s equations for magnetic waves, one can obtain the following expression relating
the electric Ėy and magnetic Ḣz components

Ėy = −jωμ0 · 1
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where γ
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xn + (nπ

b )2 is the transverse wave number.
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Given the relations in Eqs. (5) and (6), for Ėy components, we get

Ėy = −jωμ0
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Using the boundary condition in Eq. (3) and expression (7) by simple transformations, we obtain
the following relation
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where coefficients V
(s)
n and U
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n are determined by the expressions
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Coefficients Apr and Cpr are normalized to the wave resistance of the free space Z characteristic

impedance of free space z0 =
√
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where z+
pr = Ãpr + jC̃pr, z−pr = Ãpr − jC̃pr.

Given the orthogonality of the transverse eigen functions of the waveguide and the exponential
functions e−jβxz on the period of the structure, we obtain a system of homogeneous linear algebraic
equations for the wave amplitudes A
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k .
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where n = 0, 1, 2, . . . ; s = 0,±1,±2, . . . ; p = |n − k|; δnk — Kronecker symbol.
System in Eq. (11) has a nontrivial solution if its determinant is formed from coefficients at A

(s)
k

equal to zero. Opening the determinant of system in Eq. (11), we obtain a dispersion equation in the
matrix form, from which the propagation constants β0 are determined.

4. NUMERICAL RESULTS

The considered rectangular waveguide with impedance narrow walls is an electrodynamic model of an
absorbing harmonic filter. In it, the filter cell is the connection of a secondary circular waveguide with
a main rectangular waveguide. The cross section of the main waveguide a × b = 48 × 24 mm; the radii
of the auxiliary waveguides are equal to R = 9mm; the distance between adjacent cells is equal to
h = 19 mm. The analysis of the dispersion Equation (11) shows that with selected parameters, the
influence of higher spatial harmonics on the values of the propagation constants is insignificant. The
main contribution is made by central elements of the determinant of the system in Eq. (11), standing
on the main diagonal

z̃00γ
2
⊥ cos γxa + jkYx sin γxa = 0. (12)
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where γ2
⊥ = γ2

x + (nπ
b )2, n = 0, 1, 2, . . ..

Dispersion Equation (12) describes the volume (fast) waves in the guide structure. For surface
waves propagating in the impedance waveguide, in Eq. (12) it is necessary to make a replacement
γx → jγx, then we get

z̃00γ
2
⊥chγxa − jkγxshγxa = 0, (13)

where γ2
⊥ = −γ2

x + (nπ
b )2.

Dispersion Equations (12), (13) allow us to obtain a spectrum of both bulk and surface waves
propagating in such a structure. As a result of the analysis, the frequency characteristics of the constant
propagation of bulk and surface waves were obtained depending on various values of surface impedance
and wavelengths. The results of numerical calculations are presented in Figs. 2, 3, 4.

Figure 2. Dependence of the modulus of the effective impedance |Zseff | on wavelength a/λ and surface
waves in the case of one.

Figure 3. Dependence of the normalized
impedance wall: 1 — surface wave; 2 — first
volume (quasi H10) wave; 3 — second volume
(quasi H20) wave; 4 — third volume (quasi H30)
wave propagation constant for bulk.

Figure 4. Dependence β̃(|Zseff |) with a/λ = 0.8
in the case of two impedance walls bulk: 1 — quasi
H10 wave; 2 — first surface wave; 3 — second
surface wave.

Fig. 2 gives the dependence of modulus of the imaginary part of the effective impedance on the
length for the holes with the radius indicated above. Calculations show that the reactive part of the
effective impedance has a capacitive characteristic. The calculations are performed for the effective
value of the surface impedance, obtained on the basis of the formulas of the article [5]:

Zseff =

√√√√√ 1
b · h ·

b∫
0

h∫
0

Zs(y, z) · Z∗
s (y, z)dydz, (14)

where Zs(y, z) — the surface impedance, defined by formula (4); Z∗
s (y, z) — the complex conjugate

impedance.
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Figure 3 shows the frequency dependences of the constant propagation of bulk waves (quasi H10,
quasi H20, quasi H30) normalized to the wave number, and the surface wave, which is absent in a regular
waveguide.

As can be seen from Fig. 3, the capacitive nature of the surface impedance of one wall of the
waveguide shifts λkr towards larger values of the wavelength. In addition, with decreasing wavelength,
higher types of waves are excited. Calculations show that with increasing |Zseff |, the propagation
constant increases.

Numerical analysis is also carried out for a waveguide with two impedance walls. In such a structure,
as shown by calculations, the propagation of two surface waves is possible. In Fig. 4, such a case is
considered for a/λ = 0.8 and at different surface impedance values.

When Zseff → 0, the waves quasi H10 transforms into wave H10 of a regular waveguide, and surface
waves degenerate. It is also seen from the figure that for some values of Zseff , the volume wave (curve
1) undergoes cutoff. With increasing Zseff values, the propagation constants β decrease, with one of
the surface waves (curve 3) β̃ tending to unity. The wave remains surface, and the other wave (curve
2) goes from surface to volume.

5. CONCLUSION

A dispersion equation in matrix form is obtained for a waveguide with an infinite number of holes along
a narrow wall. For such a structure, the values of the effective surface impedance are calculated, and
the dispersion characteristics are obtained depending on its magnitude and wavelength. The methods
of investigation of the dispersion properties of the waveguiding system made it possible to determine its
frequency properties at various degrees of coupling of the waveguides. The results obtained are in good
agreement with the general physical concepts of the theory of coupled modes and indicate the difference
in the behavior of the dispersion dependences of coupled identical and not identical waveguides.

It is shown that in such a structure it is possible to propagate both bulk and surface waves. It has
been established that in a waveguide with two impedance walls, the existence of two surface waves is
possible which, under certain parameters of the structure, degenerate.

It is revealed that the surface impedance significantly affects the matching characteristics and
interconnection of elements of the final waveguide antenna array.

The results of this work can be used in the development of waveguide antennas and antenna arrays,
and materials may be useful in the development of various functional elements of the microwave range.
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